Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors
This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of det...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2007-07, Vol.55 (7), p.3172-3184 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3184 |
---|---|
container_issue | 7 |
container_start_page | 3172 |
container_title | IEEE transactions on signal processing |
container_volume | 55 |
creator | Hao Chen Varshney, P.K. Kay, S.M. Michels, J.H. |
description | This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance. |
doi_str_mv | 10.1109/TSP.2007.893757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4244681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244681</ieee_id><sourcerecordid>34944959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</originalsourceid><addsrcrecordid>eNp9kc1LJDEQxRtxwY_dswcvQXDx0mPSlXQSb-KOHzCwsjOCtxDT1U6k7WjSA_rfm2YGBQ97quLVrx5UvaI4YHTCGNWni_ntpKJUTpQGKeRWscs0ZyXlst7OPRVQCiXvd4q9lJ4oZZzrere4WywxxHcSWjIskcyH4JY2Dd6Rf5hCb3uHZNq26AbiezL3j73tyB8csuBDf0ZubRzITXnp37DZ6CGmn8WP1nYJf23qfnF3OV1cXJezv1c3F-ez0nGuhtJJELWV4KyWTVuBdFZUDVRWKykU1IqDc7IFUbnmIQsNNrShyBRg1QgA2C9-r31fYnhdYRrMs08Ou872GFbJANf5TKEzePJfkI0kgK5Hz6Nv6FNYxXx2MqrmgnMmRYZO15CLIaWIrXmJ_tnGd8OoGeMwOQ4zxmHWceSN442tTc52bcyv9elrTSkppRqdD9ecR8TPMa84rxWDD72QkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864544175</pqid></control><display><type>article</type><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</creator><creatorcontrib>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</creatorcontrib><description>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.893757</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Exact sciences and technology ; Gaussian ; Gaussian noise ; Hypothesis testing ; Information, signal and communications theory ; Noise ; Noise level ; Noise robustness ; non-Gaussian noise ; Nonlinear systems ; Optimization ; PFA ; Probability density functions ; Signal analysis ; Signal and communications theory ; Signal detection ; Signal to noise ratio ; Signal, noise ; Stochastic resonance ; stochastic resonance (SR) ; Strontium ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-07, Vol.55 (7), p.3172-3184</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</citedby><cites>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4244681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18877785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Varshney, P.K.</creatorcontrib><creatorcontrib>Kay, S.M.</creatorcontrib><creatorcontrib>Michels, J.H.</creatorcontrib><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Hypothesis testing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Noise level</subject><subject>Noise robustness</subject><subject>non-Gaussian noise</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>PFA</subject><subject>Probability density functions</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Stochastic resonance</subject><subject>stochastic resonance (SR)</subject><subject>Strontium</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LJDEQxRtxwY_dswcvQXDx0mPSlXQSb-KOHzCwsjOCtxDT1U6k7WjSA_rfm2YGBQ97quLVrx5UvaI4YHTCGNWni_ntpKJUTpQGKeRWscs0ZyXlst7OPRVQCiXvd4q9lJ4oZZzrere4WywxxHcSWjIskcyH4JY2Dd6Rf5hCb3uHZNq26AbiezL3j73tyB8csuBDf0ZubRzITXnp37DZ6CGmn8WP1nYJf23qfnF3OV1cXJezv1c3F-ez0nGuhtJJELWV4KyWTVuBdFZUDVRWKykU1IqDc7IFUbnmIQsNNrShyBRg1QgA2C9-r31fYnhdYRrMs08Ou872GFbJANf5TKEzePJfkI0kgK5Hz6Nv6FNYxXx2MqrmgnMmRYZO15CLIaWIrXmJ_tnGd8OoGeMwOQ4zxmHWceSN442tTc52bcyv9elrTSkppRqdD9ecR8TPMa84rxWDD72QkTQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hao Chen</creator><creator>Varshney, P.K.</creator><creator>Kay, S.M.</creator><creator>Michels, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><author>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Hypothesis testing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Noise level</topic><topic>Noise robustness</topic><topic>non-Gaussian noise</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>PFA</topic><topic>Probability density functions</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Stochastic resonance</topic><topic>stochastic resonance (SR)</topic><topic>Strontium</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Varshney, P.K.</creatorcontrib><creatorcontrib>Kay, S.M.</creatorcontrib><creatorcontrib>Michels, J.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Chen</au><au>Varshney, P.K.</au><au>Kay, S.M.</au><au>Michels, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>55</volume><issue>7</issue><spage>3172</spage><epage>3184</epage><pages>3172-3184</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.893757</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2007-07, Vol.55 (7), p.3172-3184 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_4244681 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Detection, estimation, filtering, equalization, prediction Detectors Exact sciences and technology Gaussian Gaussian noise Hypothesis testing Information, signal and communications theory Noise Noise level Noise robustness non-Gaussian noise Nonlinear systems Optimization PFA Probability density functions Signal analysis Signal and communications theory Signal detection Signal to noise ratio Signal, noise Stochastic resonance stochastic resonance (SR) Strontium Telecommunications and information theory |
title | Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20the%20Stochastic%20Resonance%20Effect%20in%20Signal%20Detection:%20Part%20I-Fixed%20Detectors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Hao%20Chen&rft.date=2007-07-01&rft.volume=55&rft.issue=7&rft.spage=3172&rft.epage=3184&rft.pages=3172-3184&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.893757&rft_dat=%3Cproquest_RIE%3E34944959%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864544175&rft_id=info:pmid/&rft_ieee_id=4244681&rfr_iscdi=true |