Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors

This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-07, Vol.55 (7), p.3172-3184
Hauptverfasser: Hao Chen, Varshney, P.K., Kay, S.M., Michels, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3184
container_issue 7
container_start_page 3172
container_title IEEE transactions on signal processing
container_volume 55
creator Hao Chen
Varshney, P.K.
Kay, S.M.
Michels, J.H.
description This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.
doi_str_mv 10.1109/TSP.2007.893757
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4244681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244681</ieee_id><sourcerecordid>34944959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</originalsourceid><addsrcrecordid>eNp9kc1LJDEQxRtxwY_dswcvQXDx0mPSlXQSb-KOHzCwsjOCtxDT1U6k7WjSA_rfm2YGBQ97quLVrx5UvaI4YHTCGNWni_ntpKJUTpQGKeRWscs0ZyXlst7OPRVQCiXvd4q9lJ4oZZzrere4WywxxHcSWjIskcyH4JY2Dd6Rf5hCb3uHZNq26AbiezL3j73tyB8csuBDf0ZubRzITXnp37DZ6CGmn8WP1nYJf23qfnF3OV1cXJezv1c3F-ez0nGuhtJJELWV4KyWTVuBdFZUDVRWKykU1IqDc7IFUbnmIQsNNrShyBRg1QgA2C9-r31fYnhdYRrMs08Ou872GFbJANf5TKEzePJfkI0kgK5Hz6Nv6FNYxXx2MqrmgnMmRYZO15CLIaWIrXmJ_tnGd8OoGeMwOQ4zxmHWceSN442tTc52bcyv9elrTSkppRqdD9ecR8TPMa84rxWDD72QkTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864544175</pqid></control><display><type>article</type><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</creator><creatorcontrib>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</creatorcontrib><description>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.893757</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Detectors ; Exact sciences and technology ; Gaussian ; Gaussian noise ; Hypothesis testing ; Information, signal and communications theory ; Noise ; Noise level ; Noise robustness ; non-Gaussian noise ; Nonlinear systems ; Optimization ; PFA ; Probability density functions ; Signal analysis ; Signal and communications theory ; Signal detection ; Signal to noise ratio ; Signal, noise ; Stochastic resonance ; stochastic resonance (SR) ; Strontium ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-07, Vol.55 (7), p.3172-3184</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</citedby><cites>FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244681$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4244681$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18877785$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Varshney, P.K.</creatorcontrib><creatorcontrib>Kay, S.M.</creatorcontrib><creatorcontrib>Michels, J.H.</creatorcontrib><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Hypothesis testing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Noise level</subject><subject>Noise robustness</subject><subject>non-Gaussian noise</subject><subject>Nonlinear systems</subject><subject>Optimization</subject><subject>PFA</subject><subject>Probability density functions</subject><subject>Signal analysis</subject><subject>Signal and communications theory</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Stochastic resonance</subject><subject>stochastic resonance (SR)</subject><subject>Strontium</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kc1LJDEQxRtxwY_dswcvQXDx0mPSlXQSb-KOHzCwsjOCtxDT1U6k7WjSA_rfm2YGBQ97quLVrx5UvaI4YHTCGNWni_ntpKJUTpQGKeRWscs0ZyXlst7OPRVQCiXvd4q9lJ4oZZzrere4WywxxHcSWjIskcyH4JY2Dd6Rf5hCb3uHZNq26AbiezL3j73tyB8csuBDf0ZubRzITXnp37DZ6CGmn8WP1nYJf23qfnF3OV1cXJezv1c3F-ez0nGuhtJJELWV4KyWTVuBdFZUDVRWKykU1IqDc7IFUbnmIQsNNrShyBRg1QgA2C9-r31fYnhdYRrMs08Ou872GFbJANf5TKEzePJfkI0kgK5Hz6Nv6FNYxXx2MqrmgnMmRYZO15CLIaWIrXmJ_tnGd8OoGeMwOQ4zxmHWceSN442tTc52bcyv9elrTSkppRqdD9ecR8TPMa84rxWDD72QkTQ</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Hao Chen</creator><creator>Varshney, P.K.</creator><creator>Kay, S.M.</creator><creator>Michels, J.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</title><author>Hao Chen ; Varshney, P.K. ; Kay, S.M. ; Michels, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c7356a73ca97df237ca52d32a9875836843cc7f352cdb583ded0d0e183e2d5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Hypothesis testing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Noise level</topic><topic>Noise robustness</topic><topic>non-Gaussian noise</topic><topic>Nonlinear systems</topic><topic>Optimization</topic><topic>PFA</topic><topic>Probability density functions</topic><topic>Signal analysis</topic><topic>Signal and communications theory</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Stochastic resonance</topic><topic>stochastic resonance (SR)</topic><topic>Strontium</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao Chen</creatorcontrib><creatorcontrib>Varshney, P.K.</creatorcontrib><creatorcontrib>Kay, S.M.</creatorcontrib><creatorcontrib>Michels, J.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Chen</au><au>Varshney, P.K.</au><au>Kay, S.M.</au><au>Michels, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-07-01</date><risdate>2007</risdate><volume>55</volume><issue>7</issue><spage>3172</spage><epage>3184</epage><pages>3172-3184</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper develops the mathematical framework to analyze the stochastic resonance (SR) effect in binary hypothesis testing problems. The mechanism for SR noise enhanced signal detection is explored. The detection performance of a noise modified detector is derived in terms of the probability of detection P D and the probability of false alarm P FA. Furthermore, sufficient conditions are established to determine the improvability of a fixed detector using SR. The form of the optimal noise pdf is determined and the optimal stochastic resonance noise pdf which renders the maximum P D without increasing P FA is derived. Finally, an illustrative example is presented where performance comparisons are made between detectors where the optimal stochastic resonance noise, as well as Gaussian, uniform, and optimal symmetric noises are applied to enhance detection performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.893757</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-07, Vol.55 (7), p.3172-3184
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_4244681
source IEEE Electronic Library (IEL)
subjects Applied sciences
Detection, estimation, filtering, equalization, prediction
Detectors
Exact sciences and technology
Gaussian
Gaussian noise
Hypothesis testing
Information, signal and communications theory
Noise
Noise level
Noise robustness
non-Gaussian noise
Nonlinear systems
Optimization
PFA
Probability density functions
Signal analysis
Signal and communications theory
Signal detection
Signal to noise ratio
Signal, noise
Stochastic resonance
stochastic resonance (SR)
Strontium
Telecommunications and information theory
title Theory of the Stochastic Resonance Effect in Signal Detection: Part I-Fixed Detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20the%20Stochastic%20Resonance%20Effect%20in%20Signal%20Detection:%20Part%20I-Fixed%20Detectors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Hao%20Chen&rft.date=2007-07-01&rft.volume=55&rft.issue=7&rft.spage=3172&rft.epage=3184&rft.pages=3172-3184&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.893757&rft_dat=%3Cproquest_RIE%3E34944959%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864544175&rft_id=info:pmid/&rft_ieee_id=4244681&rfr_iscdi=true