Image Segmentation Using Hidden Markov Gauss Mixture Models
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2007-07, Vol.16 (7), p.1902-1911 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1911 |
---|---|
container_issue | 7 |
container_start_page | 1902 |
container_title | IEEE transactions on image processing |
container_volume | 16 |
creator | Pyun, K.P. Johan Lim Chee Sun Won Gray, R.M. |
description | Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM. |
doi_str_mv | 10.1109/TIP.2007.899612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4237207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4237207</ieee_id><sourcerecordid>896169883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</originalsourceid><addsrcrecordid>eNp90MtrVDEUB-AgFfvQtYtCuQjq6k7PyTu4ktLHQAcF23XI5CbDbe-jJveK_vfNMIMFF65ySL5zyPkR8h5hgQjm_G75fUEB1EIbI5G-IkdoONYAnB6UGoSqFXJzSI5zfgBALlC-IYeoJAim1RH5suzdJlQ_wqYPw-Smdhyq-9wOm-qmbZowVCuXHsdf1bWbc65W7e9pTqFajU3o8lvyOrouh3f784TcX13eXdzUt9-ulxdfb2vPgU-1lFxzFZ1Bb4JZe-1kVHLdgAOPNNIoRQRkwnvuIIq1FJQaxPLXWK6iZifk827uUxp_ziFPtm-zD13nhjDO2eqyujRasyI__VcqkBI428IP_8CHcU5D2cJqKYAx4Kqg8x3yacw5hWifUtu79Mci2G38tsRvt_HbXfyl42w_dl73oXnx-7wL-LgHLnvXxeQG3-YXp7XQCkVxpzvXhhD-PnPKFAXFngFx-5NI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033047</pqid></control><display><type>article</type><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><source>IEEE Electronic Library (IEL)</source><creator>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</creator><creatorcontrib>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</creatorcontrib><description>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.899612</identifier><identifier>PMID: 17605387</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>2-D hidden Markov models (HMMs) ; Algorithms ; Applied sciences ; Artificial Intelligence ; Bond-percolation (BP) model ; Classification tree analysis ; Coding, codes ; Computer Simulation ; Exact sciences and technology ; Gauss mixture models (GMMs) ; Gauss mixture vector quantizer (GMVQ) ; Gaussian distribution ; Gaussian processes ; Hidden Markov models ; image classification ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Information, signal and communications theory ; Markov analysis ; Markov Chains ; Markov processes ; Mathematical models ; Models, Statistical ; Normal Distribution ; parameter estimation ; Pattern Recognition, Automated - methods ; Probability distribution ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; State estimation ; Studies ; Supervised learning ; Telecommunications and information theory ; Texture ; Vector quantization</subject><ispartof>IEEE transactions on image processing, 2007-07, Vol.16 (7), p.1902-1911</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</citedby><cites>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4237207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4237207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18858715$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17605387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyun, K.P.</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</description><subject>2-D hidden Markov models (HMMs)</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bond-percolation (BP) model</subject><subject>Classification tree analysis</subject><subject>Coding, codes</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Gauss mixture models (GMMs)</subject><subject>Gauss mixture vector quantizer (GMVQ)</subject><subject>Gaussian distribution</subject><subject>Gaussian processes</subject><subject>Hidden Markov models</subject><subject>image classification</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>parameter estimation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Probability distribution</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>State estimation</subject><subject>Studies</subject><subject>Supervised learning</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Vector quantization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90MtrVDEUB-AgFfvQtYtCuQjq6k7PyTu4ktLHQAcF23XI5CbDbe-jJveK_vfNMIMFF65ySL5zyPkR8h5hgQjm_G75fUEB1EIbI5G-IkdoONYAnB6UGoSqFXJzSI5zfgBALlC-IYeoJAim1RH5suzdJlQ_wqYPw-Smdhyq-9wOm-qmbZowVCuXHsdf1bWbc65W7e9pTqFajU3o8lvyOrouh3f784TcX13eXdzUt9-ulxdfb2vPgU-1lFxzFZ1Bb4JZe-1kVHLdgAOPNNIoRQRkwnvuIIq1FJQaxPLXWK6iZifk827uUxp_ziFPtm-zD13nhjDO2eqyujRasyI__VcqkBI428IP_8CHcU5D2cJqKYAx4Kqg8x3yacw5hWifUtu79Mci2G38tsRvt_HbXfyl42w_dl73oXnx-7wL-LgHLnvXxeQG3-YXp7XQCkVxpzvXhhD-PnPKFAXFngFx-5NI</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pyun, K.P.</creator><creator>Johan Lim</creator><creator>Chee Sun Won</creator><creator>Gray, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><author>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>2-D hidden Markov models (HMMs)</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bond-percolation (BP) model</topic><topic>Classification tree analysis</topic><topic>Coding, codes</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Gauss mixture models (GMMs)</topic><topic>Gauss mixture vector quantizer (GMVQ)</topic><topic>Gaussian distribution</topic><topic>Gaussian processes</topic><topic>Hidden Markov models</topic><topic>image classification</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>parameter estimation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Probability distribution</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>State estimation</topic><topic>Studies</topic><topic>Supervised learning</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyun, K.P.</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pyun, K.P.</au><au>Johan Lim</au><au>Chee Sun Won</au><au>Gray, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation Using Hidden Markov Gauss Mixture Models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>16</volume><issue>7</issue><spage>1902</spage><epage>1911</epage><pages>1902-1911</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17605387</pmid><doi>10.1109/TIP.2007.899612</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2007-07, Vol.16 (7), p.1902-1911 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_4237207 |
source | IEEE Electronic Library (IEL) |
subjects | 2-D hidden Markov models (HMMs) Algorithms Applied sciences Artificial Intelligence Bond-percolation (BP) model Classification tree analysis Coding, codes Computer Simulation Exact sciences and technology Gauss mixture models (GMMs) Gauss mixture vector quantizer (GMVQ) Gaussian distribution Gaussian processes Hidden Markov models image classification Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Information, signal and communications theory Markov analysis Markov Chains Markov processes Mathematical models Models, Statistical Normal Distribution parameter estimation Pattern Recognition, Automated - methods Probability distribution Sampling, quantization Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise State estimation Studies Supervised learning Telecommunications and information theory Texture Vector quantization |
title | Image Segmentation Using Hidden Markov Gauss Mixture Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20Using%20Hidden%20Markov%20Gauss%20Mixture%20Models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pyun,%20K.P.&rft.date=2007-07-01&rft.volume=16&rft.issue=7&rft.spage=1902&rft.epage=1911&rft.pages=1902-1911&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.899612&rft_dat=%3Cproquest_RIE%3E896169883%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033047&rft_id=info:pmid/17605387&rft_ieee_id=4237207&rfr_iscdi=true |