Image Segmentation Using Hidden Markov Gauss Mixture Models

Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-07, Vol.16 (7), p.1902-1911
Hauptverfasser: Pyun, K.P., Johan Lim, Chee Sun Won, Gray, R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1911
container_issue 7
container_start_page 1902
container_title IEEE transactions on image processing
container_volume 16
creator Pyun, K.P.
Johan Lim
Chee Sun Won
Gray, R.M.
description Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.
doi_str_mv 10.1109/TIP.2007.899612
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4237207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4237207</ieee_id><sourcerecordid>896169883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</originalsourceid><addsrcrecordid>eNp90MtrVDEUB-AgFfvQtYtCuQjq6k7PyTu4ktLHQAcF23XI5CbDbe-jJveK_vfNMIMFF65ySL5zyPkR8h5hgQjm_G75fUEB1EIbI5G-IkdoONYAnB6UGoSqFXJzSI5zfgBALlC-IYeoJAim1RH5suzdJlQ_wqYPw-Smdhyq-9wOm-qmbZowVCuXHsdf1bWbc65W7e9pTqFajU3o8lvyOrouh3f784TcX13eXdzUt9-ulxdfb2vPgU-1lFxzFZ1Bb4JZe-1kVHLdgAOPNNIoRQRkwnvuIIq1FJQaxPLXWK6iZifk827uUxp_ziFPtm-zD13nhjDO2eqyujRasyI__VcqkBI428IP_8CHcU5D2cJqKYAx4Kqg8x3yacw5hWifUtu79Mci2G38tsRvt_HbXfyl42w_dl73oXnx-7wL-LgHLnvXxeQG3-YXp7XQCkVxpzvXhhD-PnPKFAXFngFx-5NI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865033047</pqid></control><display><type>article</type><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><source>IEEE Electronic Library (IEL)</source><creator>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</creator><creatorcontrib>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</creatorcontrib><description>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2007.899612</identifier><identifier>PMID: 17605387</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>2-D hidden Markov models (HMMs) ; Algorithms ; Applied sciences ; Artificial Intelligence ; Bond-percolation (BP) model ; Classification tree analysis ; Coding, codes ; Computer Simulation ; Exact sciences and technology ; Gauss mixture models (GMMs) ; Gauss mixture vector quantizer (GMVQ) ; Gaussian distribution ; Gaussian processes ; Hidden Markov models ; image classification ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Information, signal and communications theory ; Markov analysis ; Markov Chains ; Markov processes ; Mathematical models ; Models, Statistical ; Normal Distribution ; parameter estimation ; Pattern Recognition, Automated - methods ; Probability distribution ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; State estimation ; Studies ; Supervised learning ; Telecommunications and information theory ; Texture ; Vector quantization</subject><ispartof>IEEE transactions on image processing, 2007-07, Vol.16 (7), p.1902-1911</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</citedby><cites>FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4237207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4237207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18858715$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17605387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyun, K.P.</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</description><subject>2-D hidden Markov models (HMMs)</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bond-percolation (BP) model</subject><subject>Classification tree analysis</subject><subject>Coding, codes</subject><subject>Computer Simulation</subject><subject>Exact sciences and technology</subject><subject>Gauss mixture models (GMMs)</subject><subject>Gauss mixture vector quantizer (GMVQ)</subject><subject>Gaussian distribution</subject><subject>Gaussian processes</subject><subject>Hidden Markov models</subject><subject>image classification</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>parameter estimation</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Probability distribution</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>State estimation</subject><subject>Studies</subject><subject>Supervised learning</subject><subject>Telecommunications and information theory</subject><subject>Texture</subject><subject>Vector quantization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90MtrVDEUB-AgFfvQtYtCuQjq6k7PyTu4ktLHQAcF23XI5CbDbe-jJveK_vfNMIMFF65ySL5zyPkR8h5hgQjm_G75fUEB1EIbI5G-IkdoONYAnB6UGoSqFXJzSI5zfgBALlC-IYeoJAim1RH5suzdJlQ_wqYPw-Smdhyq-9wOm-qmbZowVCuXHsdf1bWbc65W7e9pTqFajU3o8lvyOrouh3f784TcX13eXdzUt9-ulxdfb2vPgU-1lFxzFZ1Bb4JZe-1kVHLdgAOPNNIoRQRkwnvuIIq1FJQaxPLXWK6iZifk827uUxp_ziFPtm-zD13nhjDO2eqyujRasyI__VcqkBI428IP_8CHcU5D2cJqKYAx4Kqg8x3yacw5hWifUtu79Mci2G38tsRvt_HbXfyl42w_dl73oXnx-7wL-LgHLnvXxeQG3-YXp7XQCkVxpzvXhhD-PnPKFAXFngFx-5NI</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Pyun, K.P.</creator><creator>Johan Lim</creator><creator>Chee Sun Won</creator><creator>Gray, R.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070701</creationdate><title>Image Segmentation Using Hidden Markov Gauss Mixture Models</title><author>Pyun, K.P. ; Johan Lim ; Chee Sun Won ; Gray, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-664847fa91c9e9bc8a6f76bd0a0c12f2f65f0135cc4a0f5b6522911145fcc4f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>2-D hidden Markov models (HMMs)</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bond-percolation (BP) model</topic><topic>Classification tree analysis</topic><topic>Coding, codes</topic><topic>Computer Simulation</topic><topic>Exact sciences and technology</topic><topic>Gauss mixture models (GMMs)</topic><topic>Gauss mixture vector quantizer (GMVQ)</topic><topic>Gaussian distribution</topic><topic>Gaussian processes</topic><topic>Hidden Markov models</topic><topic>image classification</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>parameter estimation</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Probability distribution</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>State estimation</topic><topic>Studies</topic><topic>Supervised learning</topic><topic>Telecommunications and information theory</topic><topic>Texture</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyun, K.P.</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pyun, K.P.</au><au>Johan Lim</au><au>Chee Sun Won</au><au>Gray, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation Using Hidden Markov Gauss Mixture Models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>16</volume><issue>7</issue><spage>1902</spage><epage>1911</epage><pages>1902-1911</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17605387</pmid><doi>10.1109/TIP.2007.899612</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2007-07, Vol.16 (7), p.1902-1911
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_4237207
source IEEE Electronic Library (IEL)
subjects 2-D hidden Markov models (HMMs)
Algorithms
Applied sciences
Artificial Intelligence
Bond-percolation (BP) model
Classification tree analysis
Coding, codes
Computer Simulation
Exact sciences and technology
Gauss mixture models (GMMs)
Gauss mixture vector quantizer (GMVQ)
Gaussian distribution
Gaussian processes
Hidden Markov models
image classification
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Information, signal and communications theory
Markov analysis
Markov Chains
Markov processes
Mathematical models
Models, Statistical
Normal Distribution
parameter estimation
Pattern Recognition, Automated - methods
Probability distribution
Sampling, quantization
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
State estimation
Studies
Supervised learning
Telecommunications and information theory
Texture
Vector quantization
title Image Segmentation Using Hidden Markov Gauss Mixture Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20Using%20Hidden%20Markov%20Gauss%20Mixture%20Models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pyun,%20K.P.&rft.date=2007-07-01&rft.volume=16&rft.issue=7&rft.spage=1902&rft.epage=1911&rft.pages=1902-1911&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2007.899612&rft_dat=%3Cproquest_RIE%3E896169883%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865033047&rft_id=info:pmid/17605387&rft_ieee_id=4237207&rfr_iscdi=true