Adaptive Predictor Integration for System Performance Prediction
The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zhang, J. Figueiredo, R.J. |
description | The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. It uses classification algorithms such as k-Nearest Neighbor (k-NN) based supervised learning to forecast the best predictor for the workload under study. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSB based predictor selection approach used in the popular network weather service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces. |
doi_str_mv | 10.1109/IPDPS.2007.370277 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4228005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4228005</ieee_id><sourcerecordid>4228005</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1337-68badf1551492eca3c2d13a879c2c1247666bf63db579c294410e53100644de3</originalsourceid><addsrcrecordid>eNo9jM1Kw0AURkdUsK0-gLjJCyTeO7-ZnaVWDRQMtPsymbmREZOWSRD69kaUrj7Ox-Ewdo9QIIJ9rOrneltwAFMIA9yYCzZHyaUEi4CXZwBbXrEZKgE5B6Nu2HwYPgE4CGln7GkZ3HGM35TViUL04yFlVT_SR3JjPPRZO_H2NIzUZTWliTrX-7M8GbfsunVfA93974LtXta71Vu-eX-tVstNHlEIk-uycaFFpVBaTt4JzwMKVxrruUcujda6abUIjfq9rJQIpAQCaCkDiQV7-MtGItofU-xcOu0l5yWAEj8-hUoN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Predictor Integration for System Performance Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang, J. ; Figueiredo, R.J.</creator><creatorcontrib>Zhang, J. ; Figueiredo, R.J.</creatorcontrib><description>The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. It uses classification algorithms such as k-Nearest Neighbor (k-NN) based supervised learning to forecast the best predictor for the workload under study. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSB based predictor selection approach used in the popular network weather service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces.</description><identifier>ISSN: 1530-2075</identifier><identifier>ISBN: 1424409098</identifier><identifier>ISBN: 9781424409099</identifier><identifier>EISBN: 1424409101</identifier><identifier>EISBN: 9781424409105</identifier><identifier>DOI: 10.1109/IPDPS.2007.370277</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Availability ; Bandwidth ; Classification algorithms ; Grid computing ; Predictive models ; Principal component analysis ; System performance ; Virtual machining ; Weather forecasting</subject><ispartof>2007 IEEE International Parallel and Distributed Processing Symposium, 2007, p.1-10</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4228005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4228005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Figueiredo, R.J.</creatorcontrib><title>Adaptive Predictor Integration for System Performance Prediction</title><title>2007 IEEE International Parallel and Distributed Processing Symposium</title><addtitle>IPDPS</addtitle><description>The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. It uses classification algorithms such as k-Nearest Neighbor (k-NN) based supervised learning to forecast the best predictor for the workload under study. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSB based predictor selection approach used in the popular network weather service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces.</description><subject>Accuracy</subject><subject>Availability</subject><subject>Bandwidth</subject><subject>Classification algorithms</subject><subject>Grid computing</subject><subject>Predictive models</subject><subject>Principal component analysis</subject><subject>System performance</subject><subject>Virtual machining</subject><subject>Weather forecasting</subject><issn>1530-2075</issn><isbn>1424409098</isbn><isbn>9781424409099</isbn><isbn>1424409101</isbn><isbn>9781424409105</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9jM1Kw0AURkdUsK0-gLjJCyTeO7-ZnaVWDRQMtPsymbmREZOWSRD69kaUrj7Ox-Ewdo9QIIJ9rOrneltwAFMIA9yYCzZHyaUEi4CXZwBbXrEZKgE5B6Nu2HwYPgE4CGln7GkZ3HGM35TViUL04yFlVT_SR3JjPPRZO_H2NIzUZTWliTrX-7M8GbfsunVfA93974LtXta71Vu-eX-tVstNHlEIk-uycaFFpVBaTt4JzwMKVxrruUcujda6abUIjfq9rJQIpAQCaCkDiQV7-MtGItofU-xcOu0l5yWAEj8-hUoN</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Zhang, J.</creator><creator>Figueiredo, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200703</creationdate><title>Adaptive Predictor Integration for System Performance Prediction</title><author>Zhang, J. ; Figueiredo, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1337-68badf1551492eca3c2d13a879c2c1247666bf63db579c294410e53100644de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Availability</topic><topic>Bandwidth</topic><topic>Classification algorithms</topic><topic>Grid computing</topic><topic>Predictive models</topic><topic>Principal component analysis</topic><topic>System performance</topic><topic>Virtual machining</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, J.</creatorcontrib><creatorcontrib>Figueiredo, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, J.</au><au>Figueiredo, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Predictor Integration for System Performance Prediction</atitle><btitle>2007 IEEE International Parallel and Distributed Processing Symposium</btitle><stitle>IPDPS</stitle><date>2007-03</date><risdate>2007</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-2075</issn><isbn>1424409098</isbn><isbn>9781424409099</isbn><eisbn>1424409101</eisbn><eisbn>9781424409105</eisbn><abstract>The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. It uses classification algorithms such as k-Nearest Neighbor (k-NN) based supervised learning to forecast the best predictor for the workload under study. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSB based predictor selection approach used in the popular network weather service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces.</abstract><pub>IEEE</pub><doi>10.1109/IPDPS.2007.370277</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-2075 |
ispartof | 2007 IEEE International Parallel and Distributed Processing Symposium, 2007, p.1-10 |
issn | 1530-2075 |
language | eng |
recordid | cdi_ieee_primary_4228005 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Availability Bandwidth Classification algorithms Grid computing Predictive models Principal component analysis System performance Virtual machining Weather forecasting |
title | Adaptive Predictor Integration for System Performance Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Predictor%20Integration%20for%20System%20Performance%20Prediction&rft.btitle=2007%20IEEE%20International%20Parallel%20and%20Distributed%20Processing%20Symposium&rft.au=Zhang,%20J.&rft.date=2007-03&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-2075&rft.isbn=1424409098&rft.isbn_list=9781424409099&rft_id=info:doi/10.1109/IPDPS.2007.370277&rft_dat=%3Cieee_6IE%3E4228005%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424409101&rft.eisbn_list=9781424409105&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4228005&rfr_iscdi=true |