Topology Search over Biological Databases
We introduce the notion of a data topology and the problem of topology search over databases. A data topology summarizes the set of all possible relationships that connect a given set of entities. Topology search enables users to search for data topologies that relate entities in a large database, a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | |
container_start_page | 556 |
container_title | |
container_volume | |
creator | Lin Guo Shanmugasundaram, J. Yona, G. |
description | We introduce the notion of a data topology and the problem of topology search over databases. A data topology summarizes the set of all possible relationships that connect a given set of entities. Topology search enables users to search for data topologies that relate entities in a large database, and to effectively summarize and rank these relationships. Using topology search over a biological database, users can ask, for example, how transcription factor proteins are related to DNAs in humans. However, detecting topologies in large databases is a difficult problem because entities can be connected in multiple ways. In this paper, we formalize the notion of data topologies, develop efficient algorithms for computing data topologies based on user queries, and evaluate our algorithms using a real biological database, the Biozon database (www.biozon.org). |
doi_str_mv | 10.1109/ICDE.2007.367901 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4221704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4221704</ieee_id><sourcerecordid>4221704</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1321-c8b7495b137e5e64283b17802855e32abbc909eb2ef68074af2a5ea090e9df4e3</originalsourceid><addsrcrecordid>eNpVjktLw0AUhccXGGr2gptsXSTexzyXmlYtFFxYwV2ZiTcaiaQkIvTfW9GNZ3PgO_BxlDpHqBAhXC3r-aIiAFexdQHwQOXBedSkNXhgOFQZsTMlkH0--rcRH6sMwXJp2dOpyqfpHfYJGtFApi7Xw3boh9dd8ShxbN6K4UvG4qb7YV0T-2IeP2OKk0xn6qSN_ST5X8_U0-1iXd-Xq4e7ZX29KjtkwrLxyelgErITI1aT54Ruf8QbI0wxpSZAkETSWg9Ox5aikQgBJLy0WnimLn69nYhstmP3EcfdRhOhA83fQvJFZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topology Search over Biological Databases</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lin Guo ; Shanmugasundaram, J. ; Yona, G.</creator><creatorcontrib>Lin Guo ; Shanmugasundaram, J. ; Yona, G.</creatorcontrib><description>We introduce the notion of a data topology and the problem of topology search over databases. A data topology summarizes the set of all possible relationships that connect a given set of entities. Topology search enables users to search for data topologies that relate entities in a large database, and to effectively summarize and rank these relationships. Using topology search over a biological database, users can ask, for example, how transcription factor proteins are related to DNAs in humans. However, detecting topologies in large databases is a difficult problem because entities can be connected in multiple ways. In this paper, we formalize the notion of data topologies, develop efficient algorithms for computing data topologies based on user queries, and evaluate our algorithms using a real biological database, the Biozon database (www.biozon.org).</description><identifier>ISSN: 1063-6382</identifier><identifier>ISBN: 9781424408023</identifier><identifier>ISBN: 1424408024</identifier><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 9781424408030</identifier><identifier>EISBN: 1424408032</identifier><identifier>DOI: 10.1109/ICDE.2007.367901</identifier><language>eng</language><publisher>IEEE</publisher><subject>Topology</subject><ispartof>2007 IEEE 23rd International Conference on Data Engineering, 2007, p.556-565</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4221704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4221704$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin Guo</creatorcontrib><creatorcontrib>Shanmugasundaram, J.</creatorcontrib><creatorcontrib>Yona, G.</creatorcontrib><title>Topology Search over Biological Databases</title><title>2007 IEEE 23rd International Conference on Data Engineering</title><addtitle>ICDE</addtitle><description>We introduce the notion of a data topology and the problem of topology search over databases. A data topology summarizes the set of all possible relationships that connect a given set of entities. Topology search enables users to search for data topologies that relate entities in a large database, and to effectively summarize and rank these relationships. Using topology search over a biological database, users can ask, for example, how transcription factor proteins are related to DNAs in humans. However, detecting topologies in large databases is a difficult problem because entities can be connected in multiple ways. In this paper, we formalize the notion of data topologies, develop efficient algorithms for computing data topologies based on user queries, and evaluate our algorithms using a real biological database, the Biozon database (www.biozon.org).</description><subject>Topology</subject><issn>1063-6382</issn><issn>2375-026X</issn><isbn>9781424408023</isbn><isbn>1424408024</isbn><isbn>9781424408030</isbn><isbn>1424408032</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjktLw0AUhccXGGr2gptsXSTexzyXmlYtFFxYwV2ZiTcaiaQkIvTfW9GNZ3PgO_BxlDpHqBAhXC3r-aIiAFexdQHwQOXBedSkNXhgOFQZsTMlkH0--rcRH6sMwXJp2dOpyqfpHfYJGtFApi7Xw3boh9dd8ShxbN6K4UvG4qb7YV0T-2IeP2OKk0xn6qSN_ST5X8_U0-1iXd-Xq4e7ZX29KjtkwrLxyelgErITI1aT54Ruf8QbI0wxpSZAkETSWg9Ox5aikQgBJLy0WnimLn69nYhstmP3EcfdRhOhA83fQvJFZg</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Lin Guo</creator><creator>Shanmugasundaram, J.</creator><creator>Yona, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Topology Search over Biological Databases</title><author>Lin Guo ; Shanmugasundaram, J. ; Yona, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1321-c8b7495b137e5e64283b17802855e32abbc909eb2ef68074af2a5ea090e9df4e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin Guo</creatorcontrib><creatorcontrib>Shanmugasundaram, J.</creatorcontrib><creatorcontrib>Yona, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin Guo</au><au>Shanmugasundaram, J.</au><au>Yona, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topology Search over Biological Databases</atitle><btitle>2007 IEEE 23rd International Conference on Data Engineering</btitle><stitle>ICDE</stitle><date>2007-04</date><risdate>2007</risdate><spage>556</spage><epage>565</epage><pages>556-565</pages><issn>1063-6382</issn><eissn>2375-026X</eissn><isbn>9781424408023</isbn><isbn>1424408024</isbn><eisbn>9781424408030</eisbn><eisbn>1424408032</eisbn><abstract>We introduce the notion of a data topology and the problem of topology search over databases. A data topology summarizes the set of all possible relationships that connect a given set of entities. Topology search enables users to search for data topologies that relate entities in a large database, and to effectively summarize and rank these relationships. Using topology search over a biological database, users can ask, for example, how transcription factor proteins are related to DNAs in humans. However, detecting topologies in large databases is a difficult problem because entities can be connected in multiple ways. In this paper, we formalize the notion of data topologies, develop efficient algorithms for computing data topologies based on user queries, and evaluate our algorithms using a real biological database, the Biozon database (www.biozon.org).</abstract><pub>IEEE</pub><doi>10.1109/ICDE.2007.367901</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6382 |
ispartof | 2007 IEEE 23rd International Conference on Data Engineering, 2007, p.556-565 |
issn | 1063-6382 2375-026X |
language | eng |
recordid | cdi_ieee_primary_4221704 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Topology |
title | Topology Search over Biological Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topology%20Search%20over%20Biological%20Databases&rft.btitle=2007%20IEEE%2023rd%20International%20Conference%20on%20Data%20Engineering&rft.au=Lin%20Guo&rft.date=2007-04&rft.spage=556&rft.epage=565&rft.pages=556-565&rft.issn=1063-6382&rft.eissn=2375-026X&rft.isbn=9781424408023&rft.isbn_list=1424408024&rft_id=info:doi/10.1109/ICDE.2007.367901&rft_dat=%3Cieee_6IE%3E4221704%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424408030&rft.eisbn_list=1424408032&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4221704&rfr_iscdi=true |