Integrating Speech Recognition and Machine Translation

This paper presents a set of experiments that we conducted in order to optimize the performance of an Arabic/English machine translation system on broadcast news and conversational speech data. Proper integration of speech-to-text (STT) and machine translation (MT) requires special attention to issu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matsoukas, S., Bulyko, I., Bing Xiang, Kham Nguyen, Schwartz, R., Makhoul, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page IV-1284
container_issue
container_start_page IV-1281
container_title
container_volume 4
creator Matsoukas, S.
Bulyko, I.
Bing Xiang
Kham Nguyen
Schwartz, R.
Makhoul, J.
description This paper presents a set of experiments that we conducted in order to optimize the performance of an Arabic/English machine translation system on broadcast news and conversational speech data. Proper integration of speech-to-text (STT) and machine translation (MT) requires special attention to issues such as sentence boundary detection, punctuation, STT accuracy, tokenization, conversion of spoken numbers and dates to written form, optimization of MT decoding weights, and scoring. We discuss these issues, and show that a carefully tuned STT/MT integration can lead to significant translation accuracy improvements compared to simply feeding the regular STT output to a text MT system.
doi_str_mv 10.1109/ICASSP.2007.367311
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4218342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4218342</ieee_id><sourcerecordid>4218342</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e42aab8b5f9f0ec22ccf5cab8ab85966d92bac933bd107a98dffb0e3667708be3</originalsourceid><addsrcrecordid>eNpVjttKw0AURccbGGt_QF_yA4nnzEzm8ijFS6GimAq-lZnJSTpSpyXJi39vRF-EDRvWgs1m7AqhRAR7s1zc1vVLyQF0KZQWiEdsbrVByaUEzY06ZhkX2hZo4f3kn9P2lGVYcSgUSnvOLobhAwCMliZjaplG6no3xtTl9YEobPNXCvsuxTHuU-5Skz-5sI2J8nXv0rBzP_ySnbVuN9D8r2fs7f5uvXgsVs8P09dVEVFXY0GSO-eNr1rbAgXOQ2irMJEplVWqsdy7YIXwDYJ21jRt64GEUlqD8SRm7Pp3NxLR5tDHT9d_bSRHIyQX34lrTEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integrating Speech Recognition and Machine Translation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matsoukas, S. ; Bulyko, I. ; Bing Xiang ; Kham Nguyen ; Schwartz, R. ; Makhoul, J.</creator><creatorcontrib>Matsoukas, S. ; Bulyko, I. ; Bing Xiang ; Kham Nguyen ; Schwartz, R. ; Makhoul, J.</creatorcontrib><description>This paper presents a set of experiments that we conducted in order to optimize the performance of an Arabic/English machine translation system on broadcast news and conversational speech data. Proper integration of speech-to-text (STT) and machine translation (MT) requires special attention to issues such as sentence boundary detection, punctuation, STT accuracy, tokenization, conversion of spoken numbers and dates to written form, optimization of MT decoding weights, and scoring. We discuss these issues, and show that a carefully tuned STT/MT integration can lead to significant translation accuracy improvements compared to simply feeding the regular STT output to a text MT system.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.367311</identifier><language>eng</language><publisher>IEEE</publisher><subject>Broadcast technology ; Broadcasting ; Contracts ; Decoding ; Educational institutions ; Information science ; Lattices ; Loudspeakers ; Machine Translation ; Pipelines ; Sentence Boundary Detection ; Speech recognition</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-1281-IV-1284</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4218342$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4218342$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsoukas, S.</creatorcontrib><creatorcontrib>Bulyko, I.</creatorcontrib><creatorcontrib>Bing Xiang</creatorcontrib><creatorcontrib>Kham Nguyen</creatorcontrib><creatorcontrib>Schwartz, R.</creatorcontrib><creatorcontrib>Makhoul, J.</creatorcontrib><title>Integrating Speech Recognition and Machine Translation</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>This paper presents a set of experiments that we conducted in order to optimize the performance of an Arabic/English machine translation system on broadcast news and conversational speech data. Proper integration of speech-to-text (STT) and machine translation (MT) requires special attention to issues such as sentence boundary detection, punctuation, STT accuracy, tokenization, conversion of spoken numbers and dates to written form, optimization of MT decoding weights, and scoring. We discuss these issues, and show that a carefully tuned STT/MT integration can lead to significant translation accuracy improvements compared to simply feeding the regular STT output to a text MT system.</description><subject>Broadcast technology</subject><subject>Broadcasting</subject><subject>Contracts</subject><subject>Decoding</subject><subject>Educational institutions</subject><subject>Information science</subject><subject>Lattices</subject><subject>Loudspeakers</subject><subject>Machine Translation</subject><subject>Pipelines</subject><subject>Sentence Boundary Detection</subject><subject>Speech recognition</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjttKw0AURccbGGt_QF_yA4nnzEzm8ijFS6GimAq-lZnJSTpSpyXJi39vRF-EDRvWgs1m7AqhRAR7s1zc1vVLyQF0KZQWiEdsbrVByaUEzY06ZhkX2hZo4f3kn9P2lGVYcSgUSnvOLobhAwCMliZjaplG6no3xtTl9YEobPNXCvsuxTHuU-5Skz-5sI2J8nXv0rBzP_ySnbVuN9D8r2fs7f5uvXgsVs8P09dVEVFXY0GSO-eNr1rbAgXOQ2irMJEplVWqsdy7YIXwDYJ21jRt64GEUlqD8SRm7Pp3NxLR5tDHT9d_bSRHIyQX34lrTEg</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Matsoukas, S.</creator><creator>Bulyko, I.</creator><creator>Bing Xiang</creator><creator>Kham Nguyen</creator><creator>Schwartz, R.</creator><creator>Makhoul, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Integrating Speech Recognition and Machine Translation</title><author>Matsoukas, S. ; Bulyko, I. ; Bing Xiang ; Kham Nguyen ; Schwartz, R. ; Makhoul, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e42aab8b5f9f0ec22ccf5cab8ab85966d92bac933bd107a98dffb0e3667708be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Broadcast technology</topic><topic>Broadcasting</topic><topic>Contracts</topic><topic>Decoding</topic><topic>Educational institutions</topic><topic>Information science</topic><topic>Lattices</topic><topic>Loudspeakers</topic><topic>Machine Translation</topic><topic>Pipelines</topic><topic>Sentence Boundary Detection</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Matsoukas, S.</creatorcontrib><creatorcontrib>Bulyko, I.</creatorcontrib><creatorcontrib>Bing Xiang</creatorcontrib><creatorcontrib>Kham Nguyen</creatorcontrib><creatorcontrib>Schwartz, R.</creatorcontrib><creatorcontrib>Makhoul, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsoukas, S.</au><au>Bulyko, I.</au><au>Bing Xiang</au><au>Kham Nguyen</au><au>Schwartz, R.</au><au>Makhoul, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integrating Speech Recognition and Machine Translation</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>4</volume><spage>IV-1281</spage><epage>IV-1284</epage><pages>IV-1281-IV-1284</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>This paper presents a set of experiments that we conducted in order to optimize the performance of an Arabic/English machine translation system on broadcast news and conversational speech data. Proper integration of speech-to-text (STT) and machine translation (MT) requires special attention to issues such as sentence boundary detection, punctuation, STT accuracy, tokenization, conversion of spoken numbers and dates to written form, optimization of MT decoding weights, and scoring. We discuss these issues, and show that a carefully tuned STT/MT integration can lead to significant translation accuracy improvements compared to simply feeding the regular STT output to a text MT system.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.367311</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-1281-IV-1284
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4218342
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Broadcast technology
Broadcasting
Contracts
Decoding
Educational institutions
Information science
Lattices
Loudspeakers
Machine Translation
Pipelines
Sentence Boundary Detection
Speech recognition
title Integrating Speech Recognition and Machine Translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integrating%20Speech%20Recognition%20and%20Machine%20Translation&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Matsoukas,%20S.&rft.date=2007-04&rft.volume=4&rft.spage=IV-1281&rft.epage=IV-1284&rft.pages=IV-1281-IV-1284&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.367311&rft_dat=%3Cieee_6IE%3E4218342%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4218342&rfr_iscdi=true