Acoustic Model Interpolation for Non-Native Speech Recognition

This paper proposes three interpolation techniques which use the target language and the speaker's native language to improve non-native speech recognition system. These interpolation techniques are manual interpolation, weighted least square and eigenvoices. Each of them can be used under diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tien-Ping Tan, Besacier, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page IV-1012
container_issue
container_start_page IV-1009
container_title
container_volume 4
creator Tien-Ping Tan
Besacier, L.
description This paper proposes three interpolation techniques which use the target language and the speaker's native language to improve non-native speech recognition system. These interpolation techniques are manual interpolation, weighted least square and eigenvoices. Each of them can be used under different situation and constraints. In contrast to weighted least square and eigenvoices methods, manual interpolation can be achieved offline without any adaptation data. These methods can also be combined with MLLR to improve the recognition rate. Experiments presented in this paper show that the best non native adaptation method, combined with MLLR can give 10% WER absolute reduction on a French automatic speech recognition system for both Chinese and Vietnamese native speakers.
doi_str_mv 10.1109/ICASSP.2007.367243
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4218274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4218274</ieee_id><sourcerecordid>4218274</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-6da1184aa00bbbec50c823f5de28debb37e95cc032c356eb50751eb6ccd27f43</originalsourceid><addsrcrecordid>eNpVjstOwzAURM1LIpT-AGz8AynX13Zsb5CqqkClUhDpgl0VOzcQFOIoCUj8PUWwYTUandHRMHYhYCYEuKvVYp7njzMEMDOZGVTygE2dsUKhUmDQZocsQWlcKhw8H_1jxh2zRGiENBPKnbKzYXgDAGuUTdj1PMSPYawDv48lNXzVjtR3sSnGOra8ij3fxDbd7Osn8bwjCq_8iUJ8aeufxTk7qYpmoOlfTtj2Zrld3KXrh9v953VaoxJjmpWFEFYVBYD3noKGYFFWuiS0JXkvDTkdAkgMUmfkNRgtyGchlGgqJSfs8ldbE9Gu6-v3ov_aKRQWjZLfyHhOYw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Acoustic Model Interpolation for Non-Native Speech Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tien-Ping Tan ; Besacier, L.</creator><creatorcontrib>Tien-Ping Tan ; Besacier, L.</creatorcontrib><description>This paper proposes three interpolation techniques which use the target language and the speaker's native language to improve non-native speech recognition system. These interpolation techniques are manual interpolation, weighted least square and eigenvoices. Each of them can be used under different situation and constraints. In contrast to weighted least square and eigenvoices methods, manual interpolation can be achieved offline without any adaptation data. These methods can also be combined with MLLR to improve the recognition rate. Experiments presented in this paper show that the best non native adaptation method, combined with MLLR can give 10% WER absolute reduction on a French automatic speech recognition system for both Chinese and Vietnamese native speakers.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.367243</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptation ; Adaptation model ; Automatic speech recognition ; Interpolation ; Least squares methods ; Loudspeakers ; Matrices ; Maximum likelihood linear regression ; Natural languages ; non-native ASR ; Speech recognition ; Tongue</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-1009-IV-1012</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4218274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4218274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tien-Ping Tan</creatorcontrib><creatorcontrib>Besacier, L.</creatorcontrib><title>Acoustic Model Interpolation for Non-Native Speech Recognition</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>This paper proposes three interpolation techniques which use the target language and the speaker's native language to improve non-native speech recognition system. These interpolation techniques are manual interpolation, weighted least square and eigenvoices. Each of them can be used under different situation and constraints. In contrast to weighted least square and eigenvoices methods, manual interpolation can be achieved offline without any adaptation data. These methods can also be combined with MLLR to improve the recognition rate. Experiments presented in this paper show that the best non native adaptation method, combined with MLLR can give 10% WER absolute reduction on a French automatic speech recognition system for both Chinese and Vietnamese native speakers.</description><subject>adaptation</subject><subject>Adaptation model</subject><subject>Automatic speech recognition</subject><subject>Interpolation</subject><subject>Least squares methods</subject><subject>Loudspeakers</subject><subject>Matrices</subject><subject>Maximum likelihood linear regression</subject><subject>Natural languages</subject><subject>non-native ASR</subject><subject>Speech recognition</subject><subject>Tongue</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjstOwzAURM1LIpT-AGz8AynX13Zsb5CqqkClUhDpgl0VOzcQFOIoCUj8PUWwYTUandHRMHYhYCYEuKvVYp7njzMEMDOZGVTygE2dsUKhUmDQZocsQWlcKhw8H_1jxh2zRGiENBPKnbKzYXgDAGuUTdj1PMSPYawDv48lNXzVjtR3sSnGOra8ij3fxDbd7Osn8bwjCq_8iUJ8aeufxTk7qYpmoOlfTtj2Zrld3KXrh9v953VaoxJjmpWFEFYVBYD3noKGYFFWuiS0JXkvDTkdAkgMUmfkNRgtyGchlGgqJSfs8ldbE9Gu6-v3ov_aKRQWjZLfyHhOYw</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Tien-Ping Tan</creator><creator>Besacier, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Acoustic Model Interpolation for Non-Native Speech Recognition</title><author>Tien-Ping Tan ; Besacier, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-6da1184aa00bbbec50c823f5de28debb37e95cc032c356eb50751eb6ccd27f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>adaptation</topic><topic>Adaptation model</topic><topic>Automatic speech recognition</topic><topic>Interpolation</topic><topic>Least squares methods</topic><topic>Loudspeakers</topic><topic>Matrices</topic><topic>Maximum likelihood linear regression</topic><topic>Natural languages</topic><topic>non-native ASR</topic><topic>Speech recognition</topic><topic>Tongue</topic><toplevel>online_resources</toplevel><creatorcontrib>Tien-Ping Tan</creatorcontrib><creatorcontrib>Besacier, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tien-Ping Tan</au><au>Besacier, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Acoustic Model Interpolation for Non-Native Speech Recognition</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>4</volume><spage>IV-1009</spage><epage>IV-1012</epage><pages>IV-1009-IV-1012</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>This paper proposes three interpolation techniques which use the target language and the speaker's native language to improve non-native speech recognition system. These interpolation techniques are manual interpolation, weighted least square and eigenvoices. Each of them can be used under different situation and constraints. In contrast to weighted least square and eigenvoices methods, manual interpolation can be achieved offline without any adaptation data. These methods can also be combined with MLLR to improve the recognition rate. Experiments presented in this paper show that the best non native adaptation method, combined with MLLR can give 10% WER absolute reduction on a French automatic speech recognition system for both Chinese and Vietnamese native speakers.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.367243</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-1009-IV-1012
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4218274
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptation
Adaptation model
Automatic speech recognition
Interpolation
Least squares methods
Loudspeakers
Matrices
Maximum likelihood linear regression
Natural languages
non-native ASR
Speech recognition
Tongue
title Acoustic Model Interpolation for Non-Native Speech Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Acoustic%20Model%20Interpolation%20for%20Non-Native%20Speech%20Recognition&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Tien-Ping%20Tan&rft.date=2007-04&rft.volume=4&rft.spage=IV-1009&rft.epage=IV-1012&rft.pages=IV-1009-IV-1012&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.367243&rft_dat=%3Cieee_6IE%3E4218274%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4218274&rfr_iscdi=true