Multisensor Dynamic Waveform Fusion

Speech communication is significantly more difficult in severe acoustic background noise environments, especially when low-rate speech coders are used. Non-acoustic sensors, such as radar sensors, vibrometers, and bone-conduction microphones, offer significant potential in these situations. We exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: McCree, A., Brady, K., Quatieri, T. F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page IV-580
container_issue
container_start_page IV-577
container_title
container_volume 4
creator McCree, A.
Brady, K.
Quatieri, T. F.
description Speech communication is significantly more difficult in severe acoustic background noise environments, especially when low-rate speech coders are used. Non-acoustic sensors, such as radar sensors, vibrometers, and bone-conduction microphones, offer significant potential in these situations. We extend previous work on fixed waveform fusion from multiple sensors to an optimal dynamic waveform fusion algorithm that minimizes both additive noise and signal distortion in the estimated speech signal. We show that a minimum mean squared error (MMSE) waveform matching criterion results in a generalized multichannel Wiener filter, and that this filter will simultaneously perform waveform fusion, noise suppression, and crosschannel noise cancellation. Formal intelligibility and quality testing demonstrate significant improvement from this approach.
doi_str_mv 10.1109/ICASSP.2007.366978
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4218166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4218166</ieee_id><sourcerecordid>4218166</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b9e615faa94d43f1b278551b5f7f759edae76ad2424061bf7b14b79b10a705af3</originalsourceid><addsrcrecordid>eNpVjs1KAzEURuMfONa-gG4GXGe8N5PkJktprQoVhSq6K4mTQKQzI5NW6Ns7oBs351sc-DiMXSBUiGCvH2Y3q9VzJQCoqrW2ZA7YdCRKISWQMPqQFaImy9HC-9E_R_aYFagEcI3SnrKznD8BwJA0Bbt63G22KYcu90M533euTR_lm_sOsR_acrHLqe_O2Ul0mxymfzthr4vbl9k9Xz7djWFLnpDUlnsbNKronJWNrCN6QUYp9CpSJGVD4wJp14gxCzT6SB6lJ-sRHIFysZ6wy9_fFEJYfw2pdcN-LQUa1Lr-AQpGRD0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multisensor Dynamic Waveform Fusion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>McCree, A. ; Brady, K. ; Quatieri, T. F.</creator><creatorcontrib>McCree, A. ; Brady, K. ; Quatieri, T. F.</creatorcontrib><description>Speech communication is significantly more difficult in severe acoustic background noise environments, especially when low-rate speech coders are used. Non-acoustic sensors, such as radar sensors, vibrometers, and bone-conduction microphones, offer significant potential in these situations. We extend previous work on fixed waveform fusion from multiple sensors to an optimal dynamic waveform fusion algorithm that minimizes both additive noise and signal distortion in the estimated speech signal. We show that a minimum mean squared error (MMSE) waveform matching criterion results in a generalized multichannel Wiener filter, and that this filter will simultaneously perform waveform fusion, noise suppression, and crosschannel noise cancellation. Formal intelligibility and quality testing demonstrate significant improvement from this approach.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366978</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic sensors ; Background noise ; Microphones ; Noise cancellation ; Non-acoustic sensor ; Oral communication ; Radar ; Sensor fusion ; Speech enhancement ; Vibrometers ; waveform fusion ; Wiener filter</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-577-IV-580</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4218166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4218166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McCree, A.</creatorcontrib><creatorcontrib>Brady, K.</creatorcontrib><creatorcontrib>Quatieri, T. F.</creatorcontrib><title>Multisensor Dynamic Waveform Fusion</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>Speech communication is significantly more difficult in severe acoustic background noise environments, especially when low-rate speech coders are used. Non-acoustic sensors, such as radar sensors, vibrometers, and bone-conduction microphones, offer significant potential in these situations. We extend previous work on fixed waveform fusion from multiple sensors to an optimal dynamic waveform fusion algorithm that minimizes both additive noise and signal distortion in the estimated speech signal. We show that a minimum mean squared error (MMSE) waveform matching criterion results in a generalized multichannel Wiener filter, and that this filter will simultaneously perform waveform fusion, noise suppression, and crosschannel noise cancellation. Formal intelligibility and quality testing demonstrate significant improvement from this approach.</description><subject>Acoustic sensors</subject><subject>Background noise</subject><subject>Microphones</subject><subject>Noise cancellation</subject><subject>Non-acoustic sensor</subject><subject>Oral communication</subject><subject>Radar</subject><subject>Sensor fusion</subject><subject>Speech enhancement</subject><subject>Vibrometers</subject><subject>waveform fusion</subject><subject>Wiener filter</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjs1KAzEURuMfONa-gG4GXGe8N5PkJktprQoVhSq6K4mTQKQzI5NW6Ns7oBs351sc-DiMXSBUiGCvH2Y3q9VzJQCoqrW2ZA7YdCRKISWQMPqQFaImy9HC-9E_R_aYFagEcI3SnrKznD8BwJA0Bbt63G22KYcu90M533euTR_lm_sOsR_acrHLqe_O2Ul0mxymfzthr4vbl9k9Xz7djWFLnpDUlnsbNKronJWNrCN6QUYp9CpSJGVD4wJp14gxCzT6SB6lJ-sRHIFysZ6wy9_fFEJYfw2pdcN-LQUa1Lr-AQpGRD0</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>McCree, A.</creator><creator>Brady, K.</creator><creator>Quatieri, T. F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Multisensor Dynamic Waveform Fusion</title><author>McCree, A. ; Brady, K. ; Quatieri, T. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b9e615faa94d43f1b278551b5f7f759edae76ad2424061bf7b14b79b10a705af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustic sensors</topic><topic>Background noise</topic><topic>Microphones</topic><topic>Noise cancellation</topic><topic>Non-acoustic sensor</topic><topic>Oral communication</topic><topic>Radar</topic><topic>Sensor fusion</topic><topic>Speech enhancement</topic><topic>Vibrometers</topic><topic>waveform fusion</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>McCree, A.</creatorcontrib><creatorcontrib>Brady, K.</creatorcontrib><creatorcontrib>Quatieri, T. F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McCree, A.</au><au>Brady, K.</au><au>Quatieri, T. F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multisensor Dynamic Waveform Fusion</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>4</volume><spage>IV-577</spage><epage>IV-580</epage><pages>IV-577-IV-580</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>Speech communication is significantly more difficult in severe acoustic background noise environments, especially when low-rate speech coders are used. Non-acoustic sensors, such as radar sensors, vibrometers, and bone-conduction microphones, offer significant potential in these situations. We extend previous work on fixed waveform fusion from multiple sensors to an optimal dynamic waveform fusion algorithm that minimizes both additive noise and signal distortion in the estimated speech signal. We show that a minimum mean squared error (MMSE) waveform matching criterion results in a generalized multichannel Wiener filter, and that this filter will simultaneously perform waveform fusion, noise suppression, and crosschannel noise cancellation. Formal intelligibility and quality testing demonstrate significant improvement from this approach.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366978</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-577-IV-580
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4218166
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic sensors
Background noise
Microphones
Noise cancellation
Non-acoustic sensor
Oral communication
Radar
Sensor fusion
Speech enhancement
Vibrometers
waveform fusion
Wiener filter
title Multisensor Dynamic Waveform Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multisensor%20Dynamic%20Waveform%20Fusion&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=McCree,%20A.&rft.date=2007-04&rft.volume=4&rft.spage=IV-577&rft.epage=IV-580&rft.pages=IV-577-IV-580&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366978&rft_dat=%3Cieee_6IE%3E4218166%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4218166&rfr_iscdi=true