Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition

Multiple recent studies have shown that speaker recognition performance using frame-based cepstral features is improved by adding higher-level information, including prosodic and lexical features. This paper explores the important question of finding a good kernel for a system that models syllable-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ferrer, Luciana, Shriberg, Elizabeth, Kajarekar, Sachin, Sonmez, Kemal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page IV-236
container_issue
container_start_page IV-233
container_title
container_volume 4
creator Ferrer, Luciana
Shriberg, Elizabeth
Kajarekar, Sachin
Sonmez, Kemal
description Multiple recent studies have shown that speaker recognition performance using frame-based cepstral features is improved by adding higher-level information, including prosodic and lexical features. This paper explores the important question of finding a good kernel for a system that models syllable-based prosodic features using support vector machines (SVMs). The system has been the best performing of our high-level systems in the last two NIST evaluations, and gives significant improvements when combined with cepstral-based systems. We introduce two new methods for transforming the syllable-level features into a single high-dimensional vector that can be well modeled by SVMs, resulting in significant gains in speaker recognition performance.
doi_str_mv 10.1109/ICASSP.2007.366892
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4218080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4218080</ieee_id><sourcerecordid>4218080</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b23da31d89bded2587ee9987d74177861ad0d7c350dc356cd2c410c7a21fb31f3</originalsourceid><addsrcrecordid>eNpVj8tOwzAURM1LopT-AGz8Ayn32k5sL1GhgNSKiABCbConvqkMbVI56QK-nlawYTNnMUcjDWMXCGNEsFcPk-uiyMcCQI9llhkrDtjIaoNKKAVamOyQDYTUNkELb0f_Om2P2QBTAUmGyp6ys677AACjlRmw99xFt6aeYvh2fWgb3tY8j23X-lDxKbl-G4nfhK6PodzuhY7XbeTF65zPW0-r0Cx5aHixIfdJkT9R1S6bsBfP2UntVh2N_jhkL9Pb58l9Mnu82_2ZJQF12ielkN5J9MaWnrxIjSay1mivFWptMnQevK5kCn4XWeVFpRAq7QTWpcRaDtnl724gosUmhrWLXwsl0IAB-QPKCViq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ferrer, Luciana ; Shriberg, Elizabeth ; Kajarekar, Sachin ; Sonmez, Kemal</creator><creatorcontrib>Ferrer, Luciana ; Shriberg, Elizabeth ; Kajarekar, Sachin ; Sonmez, Kemal</creatorcontrib><description>Multiple recent studies have shown that speaker recognition performance using frame-based cepstral features is improved by adding higher-level information, including prosodic and lexical features. This paper explores the important question of finding a good kernel for a system that models syllable-based prosodic features using support vector machines (SVMs). The system has been the best performing of our high-level systems in the last two NIST evaluations, and gives significant improvements when combined with cepstral-based systems. We introduce two new methods for transforming the syllable-level features into a single high-dimensional vector that can be well modeled by SVMs, resulting in significant gains in speaker recognition performance.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366892</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cepstral analysis ; Feature extraction ; GMM ; Kernel ; Laboratories ; NIST ; Performance evaluation ; Performance gain ; Prosody ; Speaker recognition ; Speech ; Support vector machines ; SVM</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-233-IV-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4218080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4218080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Shriberg, Elizabeth</creatorcontrib><creatorcontrib>Kajarekar, Sachin</creatorcontrib><creatorcontrib>Sonmez, Kemal</creatorcontrib><title>Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>Multiple recent studies have shown that speaker recognition performance using frame-based cepstral features is improved by adding higher-level information, including prosodic and lexical features. This paper explores the important question of finding a good kernel for a system that models syllable-based prosodic features using support vector machines (SVMs). The system has been the best performing of our high-level systems in the last two NIST evaluations, and gives significant improvements when combined with cepstral-based systems. We introduce two new methods for transforming the syllable-level features into a single high-dimensional vector that can be well modeled by SVMs, resulting in significant gains in speaker recognition performance.</description><subject>Cepstral analysis</subject><subject>Feature extraction</subject><subject>GMM</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>NIST</subject><subject>Performance evaluation</subject><subject>Performance gain</subject><subject>Prosody</subject><subject>Speaker recognition</subject><subject>Speech</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tOwzAURM1LopT-AGz8Ayn32k5sL1GhgNSKiABCbConvqkMbVI56QK-nlawYTNnMUcjDWMXCGNEsFcPk-uiyMcCQI9llhkrDtjIaoNKKAVamOyQDYTUNkELb0f_Om2P2QBTAUmGyp6ys677AACjlRmw99xFt6aeYvh2fWgb3tY8j23X-lDxKbl-G4nfhK6PodzuhY7XbeTF65zPW0-r0Cx5aHixIfdJkT9R1S6bsBfP2UntVh2N_jhkL9Pb58l9Mnu82_2ZJQF12ielkN5J9MaWnrxIjSay1mivFWptMnQevK5kCn4XWeVFpRAq7QTWpcRaDtnl724gosUmhrWLXwsl0IAB-QPKCViq</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Ferrer, Luciana</creator><creator>Shriberg, Elizabeth</creator><creator>Kajarekar, Sachin</creator><creator>Sonmez, Kemal</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition</title><author>Ferrer, Luciana ; Shriberg, Elizabeth ; Kajarekar, Sachin ; Sonmez, Kemal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b23da31d89bded2587ee9987d74177861ad0d7c350dc356cd2c410c7a21fb31f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cepstral analysis</topic><topic>Feature extraction</topic><topic>GMM</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>NIST</topic><topic>Performance evaluation</topic><topic>Performance gain</topic><topic>Prosody</topic><topic>Speaker recognition</topic><topic>Speech</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, Luciana</creatorcontrib><creatorcontrib>Shriberg, Elizabeth</creatorcontrib><creatorcontrib>Kajarekar, Sachin</creatorcontrib><creatorcontrib>Sonmez, Kemal</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrer, Luciana</au><au>Shriberg, Elizabeth</au><au>Kajarekar, Sachin</au><au>Sonmez, Kemal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>4</volume><spage>IV-233</spage><epage>IV-236</epage><pages>IV-233-IV-236</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>Multiple recent studies have shown that speaker recognition performance using frame-based cepstral features is improved by adding higher-level information, including prosodic and lexical features. This paper explores the important question of finding a good kernel for a system that models syllable-based prosodic features using support vector machines (SVMs). The system has been the best performing of our high-level systems in the last two NIST evaluations, and gives significant improvements when combined with cepstral-based systems. We introduce two new methods for transforming the syllable-level features into a single high-dimensional vector that can be well modeled by SVMs, resulting in significant gains in speaker recognition performance.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366892</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.4, p.IV-233-IV-236
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4218080
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cepstral analysis
Feature extraction
GMM
Kernel
Laboratories
NIST
Performance evaluation
Performance gain
Prosody
Speaker recognition
Speech
Support vector machines
SVM
title Parameterization of Prosodic Feature Distributions for SVM Modeling in Speaker Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameterization%20of%20Prosodic%20Feature%20Distributions%20for%20SVM%20Modeling%20in%20Speaker%20Recognition&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Ferrer,%20Luciana&rft.date=2007-04&rft.volume=4&rft.spage=IV-233&rft.epage=IV-236&rft.pages=IV-233-IV-236&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366892&rft_dat=%3Cieee_6IE%3E4218080%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4218080&rfr_iscdi=true