Face Detection using Local SMQT Features and Split up Snow Classifier

The purpose of this paper is threefold: firstly, the local successive mean quantization transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up sparse network of winnows is presented to speed up the original classifier. Finally, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nilsson, M., Nordberg, J., Claesson, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page II-592
container_issue
container_start_page II-589
container_title
container_volume 2
creator Nilsson, M.
Nordberg, J.
Claesson, I.
description The purpose of this paper is threefold: firstly, the local successive mean quantization transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up sparse network of winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the receiver operation characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701& objectType=FILE.
doi_str_mv 10.1109/ICASSP.2007.366304
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4217477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4217477</ieee_id><sourcerecordid>4217477</sourcerecordid><originalsourceid>FETCH-LOGICAL-i285t-41595aab756c3a24c2927319ef4c7c0e2a858a633f1b39d83aaba7c20e4e31d63</originalsourceid><addsrcrecordid>eNpVjs1KAzEURuMfWGtfQDd5gak3P5ObLKW2KlRUpoK7cpvekcg4LZMpxbe3oBtX3-IcDp8QVwrGSkG4eZzcVtXLWAPg2DhnwB6JUUCvrLYWUHt3LAbaYChUgPeTfwzDqRioUkPhlA3n4iLnTwDwaP1ATGcUWd5xz7FPm1bucmo_5HwTqZHV0-tCzpj6XcdZUruW1bZJvdxtZdVu9nLSUM6pTtxdirOamsyjvx2Kt9l0MXko5s_3h-vzImlf9oVVZSiJVli6aEjbqINGowLXNmIE1uRLT86YWq1MWHtzcAmjBrZs1NqZobj-7SZmXm679EXd99JqhRbR_ACVkk9F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Detection using Local SMQT Features and Split up Snow Classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nilsson, M. ; Nordberg, J. ; Claesson, I.</creator><creatorcontrib>Nilsson, M. ; Nordberg, J. ; Claesson, I.</creatorcontrib><description>The purpose of this paper is threefold: firstly, the local successive mean quantization transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up sparse network of winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the receiver operation characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&amp; objectType=FILE.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366304</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biosensors ; Computer languages ; Detectors ; Face detection ; Image processing ; Lighting ; Object detection ; Object recognition ; Pattern recognition ; Quantization ; Sensor phenomena and characterization ; Snow ; Spatial databases</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, , Vol.2, p.II-589-II-592</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4217477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4217477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Nordberg, J.</creatorcontrib><creatorcontrib>Claesson, I.</creatorcontrib><title>Face Detection using Local SMQT Features and Split up Snow Classifier</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>The purpose of this paper is threefold: firstly, the local successive mean quantization transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up sparse network of winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the receiver operation characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&amp; objectType=FILE.</description><subject>Biosensors</subject><subject>Computer languages</subject><subject>Detectors</subject><subject>Face detection</subject><subject>Image processing</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Quantization</subject><subject>Sensor phenomena and characterization</subject><subject>Snow</subject><subject>Spatial databases</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjs1KAzEURuMfWGtfQDd5gak3P5ObLKW2KlRUpoK7cpvekcg4LZMpxbe3oBtX3-IcDp8QVwrGSkG4eZzcVtXLWAPg2DhnwB6JUUCvrLYWUHt3LAbaYChUgPeTfwzDqRioUkPhlA3n4iLnTwDwaP1ATGcUWd5xz7FPm1bucmo_5HwTqZHV0-tCzpj6XcdZUruW1bZJvdxtZdVu9nLSUM6pTtxdirOamsyjvx2Kt9l0MXko5s_3h-vzImlf9oVVZSiJVli6aEjbqINGowLXNmIE1uRLT86YWq1MWHtzcAmjBrZs1NqZobj-7SZmXm679EXd99JqhRbR_ACVkk9F</recordid><creator>Nilsson, M.</creator><creator>Nordberg, J.</creator><creator>Claesson, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><title>Face Detection using Local SMQT Features and Split up Snow Classifier</title><author>Nilsson, M. ; Nordberg, J. ; Claesson, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i285t-41595aab756c3a24c2927319ef4c7c0e2a858a633f1b39d83aaba7c20e4e31d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><topic>Biosensors</topic><topic>Computer languages</topic><topic>Detectors</topic><topic>Face detection</topic><topic>Image processing</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Quantization</topic><topic>Sensor phenomena and characterization</topic><topic>Snow</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Nilsson, M.</creatorcontrib><creatorcontrib>Nordberg, J.</creatorcontrib><creatorcontrib>Claesson, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nilsson, M.</au><au>Nordberg, J.</au><au>Claesson, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Detection using Local SMQT Features and Split up Snow Classifier</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><volume>2</volume><spage>II-589</spage><epage>II-592</epage><pages>II-589-II-592</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>The purpose of this paper is threefold: firstly, the local successive mean quantization transform features are proposed for illumination and sensor insensitive operation in object recognition. Secondly, a split up sparse network of winnows is presented to speed up the original classifier. Finally, the features and classifier are combined for the task of frontal face detection. Detection results are presented for the MIT+CMU and the BioID databases. With regard to this face detector, the receiver operation characteristics curve for the BioID database yields the best published result. The result for the CMU+MIT database is comparable to state-of-the-art face detectors. A Matlab version of the face detection algorithm can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=13701&amp; objectType=FILE.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366304</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, , Vol.2, p.II-589-II-592
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4217477
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biosensors
Computer languages
Detectors
Face detection
Image processing
Lighting
Object detection
Object recognition
Pattern recognition
Quantization
Sensor phenomena and characterization
Snow
Spatial databases
title Face Detection using Local SMQT Features and Split up Snow Classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Detection%20using%20Local%20SMQT%20Features%20and%20Split%20up%20Snow%20Classifier&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Nilsson,%20M.&rft.volume=2&rft.spage=II-589&rft.epage=II-592&rft.pages=II-589-II-592&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366304&rft_dat=%3Cieee_6IE%3E4217477%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4217477&rfr_iscdi=true