Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis

In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm acr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abiantun, Ramzi, Savvides, Marios, Vijayakumar, B.V.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!