Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis

In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm acr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abiantun, Ramzi, Savvides, Marios, Vijayakumar, B.V.K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page I-1260
container_issue
container_start_page I-1257
container_title
container_volume 1
creator Abiantun, Ramzi
Savvides, Marios
Vijayakumar, B.V.K.
description In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm across different datasets is an important practical aspect of face recognition applications where the technology cannot be dataset-dependant in real-world practical applications. In most face recognition literature, algorithms are demonstrated on datasets by training on some part of the dataset and testing on the remainder. In general, the training and testing data have the same people but different capture sessions so essentially, some of the expected variation and people are modeled in the training set. In this paper we describe how we efficiently build a compact feature space using kernel correlation filter analysis on the generic training set of the FRGC dataset, and test the built subspace on other well-known face datasets. We show that the feature subspace produced by KCFA has good representation and discrimination to unseen datasets and produces good verification and identification rates compared to other subspace methods such as PCA. Its efficiency, lower dimensionality (the KCFA is only a 222 dimensional subspace) and discriminative power make it more practical and powerful than PCA as a powerful lower dimensionality reduction method for modeling faces and facial variations.
doi_str_mv 10.1109/ICASSP.2007.366143
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4217315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4217315</ieee_id><sourcerecordid>4217315</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9f1d5d5a92791da47c1edc1fa6805741ea73af6e611b330dac7be9f12e202bfb3</originalsourceid><addsrcrecordid>eNpVT11LwzAUjV_gnPsD-pI_0JmbpE3zOKab4kDZHPg20uZ2RLpUkhaZ7_5v69eDcOByuOeDQ8gFsDEA01d308lq9TjmjKmxyDKQ4oCMtMpBcimZ4nl2SAZcKJ2AZs9H_35KH5MBpJwlvU-fkrMYXxhjuZL5gHzM0WMwtXtHSxfNG712O_TRNd7UdIam7QLSVVfEV1MirZpAl03RxZbOvvgSy2brXdvLaY-1j4ieWtOaiG2kXXR-S-8xeKzptAkBa_Ot_Que9C376OI5OalMHXH0e4dkPbt5mt4mi4d5P32ROFBpm-gKbGpTo_tNYI1UJaAtoTJZzlIlAY0SpsowAyiEYNaUqsDexJEzXlSFGJLLn1yHiJvX4HYm7DeSgxKQik8nkWkJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abiantun, Ramzi ; Savvides, Marios ; Vijayakumar, B.V.K.</creator><creatorcontrib>Abiantun, Ramzi ; Savvides, Marios ; Vijayakumar, B.V.K.</creatorcontrib><description>In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm across different datasets is an important practical aspect of face recognition applications where the technology cannot be dataset-dependant in real-world practical applications. In most face recognition literature, algorithms are demonstrated on datasets by training on some part of the dataset and testing on the remainder. In general, the training and testing data have the same people but different capture sessions so essentially, some of the expected variation and people are modeled in the training set. In this paper we describe how we efficiently build a compact feature space using kernel correlation filter analysis on the generic training set of the FRGC dataset, and test the built subspace on other well-known face datasets. We show that the feature subspace produced by KCFA has good representation and discrimination to unseen datasets and produces good verification and identification rates compared to other subspace methods such as PCA. Its efficiency, lower dimensionality (the KCFA is only a 222 dimensional subspace) and discriminative power make it more practical and powerful than PCA as a powerful lower dimensionality reduction method for modeling faces and facial variations.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.366143</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Cameras ; Face recognition ; FERET ; Filtering theory ; Filters ; FRGC ; Kernel ; Kernel Correlation Filters ; Performance analysis ; PIE ; Principal component analysis ; Reduced Feature Subspace ; Robustness ; Testing</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.1, p.I-1257-I-1260</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4217315$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4217315$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abiantun, Ramzi</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><creatorcontrib>Vijayakumar, B.V.K.</creatorcontrib><title>Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm across different datasets is an important practical aspect of face recognition applications where the technology cannot be dataset-dependant in real-world practical applications. In most face recognition literature, algorithms are demonstrated on datasets by training on some part of the dataset and testing on the remainder. In general, the training and testing data have the same people but different capture sessions so essentially, some of the expected variation and people are modeled in the training set. In this paper we describe how we efficiently build a compact feature space using kernel correlation filter analysis on the generic training set of the FRGC dataset, and test the built subspace on other well-known face datasets. We show that the feature subspace produced by KCFA has good representation and discrimination to unseen datasets and produces good verification and identification rates compared to other subspace methods such as PCA. Its efficiency, lower dimensionality (the KCFA is only a 222 dimensional subspace) and discriminative power make it more practical and powerful than PCA as a powerful lower dimensionality reduction method for modeling faces and facial variations.</description><subject>Algorithm design and analysis</subject><subject>Cameras</subject><subject>Face recognition</subject><subject>FERET</subject><subject>Filtering theory</subject><subject>Filters</subject><subject>FRGC</subject><subject>Kernel</subject><subject>Kernel Correlation Filters</subject><subject>Performance analysis</subject><subject>PIE</subject><subject>Principal component analysis</subject><subject>Reduced Feature Subspace</subject><subject>Robustness</subject><subject>Testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT11LwzAUjV_gnPsD-pI_0JmbpE3zOKab4kDZHPg20uZ2RLpUkhaZ7_5v69eDcOByuOeDQ8gFsDEA01d308lq9TjmjKmxyDKQ4oCMtMpBcimZ4nl2SAZcKJ2AZs9H_35KH5MBpJwlvU-fkrMYXxhjuZL5gHzM0WMwtXtHSxfNG712O_TRNd7UdIam7QLSVVfEV1MirZpAl03RxZbOvvgSy2brXdvLaY-1j4ieWtOaiG2kXXR-S-8xeKzptAkBa_Ot_Que9C376OI5OalMHXH0e4dkPbt5mt4mi4d5P32ROFBpm-gKbGpTo_tNYI1UJaAtoTJZzlIlAY0SpsowAyiEYNaUqsDexJEzXlSFGJLLn1yHiJvX4HYm7DeSgxKQik8nkWkJ</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Abiantun, Ramzi</creator><creator>Savvides, Marios</creator><creator>Vijayakumar, B.V.K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis</title><author>Abiantun, Ramzi ; Savvides, Marios ; Vijayakumar, B.V.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9f1d5d5a92791da47c1edc1fa6805741ea73af6e611b330dac7be9f12e202bfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithm design and analysis</topic><topic>Cameras</topic><topic>Face recognition</topic><topic>FERET</topic><topic>Filtering theory</topic><topic>Filters</topic><topic>FRGC</topic><topic>Kernel</topic><topic>Kernel Correlation Filters</topic><topic>Performance analysis</topic><topic>PIE</topic><topic>Principal component analysis</topic><topic>Reduced Feature Subspace</topic><topic>Robustness</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Abiantun, Ramzi</creatorcontrib><creatorcontrib>Savvides, Marios</creatorcontrib><creatorcontrib>Vijayakumar, B.V.K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abiantun, Ramzi</au><au>Savvides, Marios</au><au>Vijayakumar, B.V.K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>1</volume><spage>I-1257</spage><epage>I-1260</epage><pages>I-1257-I-1260</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>In this paper we analyze and demonstrate the subspace generalization power of the kernel correlation feature analysis (KCFA) method for producing compact low dimensional subspace that has good representation ability to work on unseen, untrained datasets. Examining the portability of an algorithm across different datasets is an important practical aspect of face recognition applications where the technology cannot be dataset-dependant in real-world practical applications. In most face recognition literature, algorithms are demonstrated on datasets by training on some part of the dataset and testing on the remainder. In general, the training and testing data have the same people but different capture sessions so essentially, some of the expected variation and people are modeled in the training set. In this paper we describe how we efficiently build a compact feature space using kernel correlation filter analysis on the generic training set of the FRGC dataset, and test the built subspace on other well-known face datasets. We show that the feature subspace produced by KCFA has good representation and discrimination to unseen datasets and produces good verification and identification rates compared to other subspace methods such as PCA. Its efficiency, lower dimensionality (the KCFA is only a 222 dimensional subspace) and discriminative power make it more practical and powerful than PCA as a powerful lower dimensionality reduction method for modeling faces and facial variations.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.366143</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.1, p.I-1257-I-1260
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4217315
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Cameras
Face recognition
FERET
Filtering theory
Filters
FRGC
Kernel
Kernel Correlation Filters
Performance analysis
PIE
Principal component analysis
Reduced Feature Subspace
Robustness
Testing
title Generalized Low Dimensional Feature Subspace for Robust Face Recognition on Unseen datasets using Kernel Correlation Feature Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20Low%20Dimensional%20Feature%20Subspace%20for%20Robust%20Face%20Recognition%20on%20Unseen%20datasets%20using%20Kernel%20Correlation%20Feature%20Analysis&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Abiantun,%20Ramzi&rft.date=2007-04&rft.volume=1&rft.spage=I-1257&rft.epage=I-1260&rft.pages=I-1257-I-1260&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.366143&rft_dat=%3Cieee_6IE%3E4217315%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4217315&rfr_iscdi=true