Morphological Diversity and Sparse Image Denoising

Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fadili, M. J., Starck, J. -L., Boubchir, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page I-592
container_issue
container_start_page I-589
container_title
container_volume 1
creator Fadili, M. J.
Starck, J. -L.
Boubchir, L.
description Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear transforms. Rather than using the basic approach where the denoised image is obtained by simple averaging of denoised estimates provided by each sparse transform, we here develop an elegant Bayesian framework to optimally combine the individual estimates. Our derivation of the optimally combined denoiser relies on a scale mixture of Gaussian (SMG) prior on the coefficients in each representation transform. Exploiting this prior, we design a Bayesian ℓ 2 -risk (mean field) nonlinear estimator and we derive a closed-form for its expression when the SMG specializes to the Bessel K form prior. Experimental results are carried out to show the striking profits gained from exploiting sparsity of data and their morphological diversity.
doi_str_mv 10.1109/ICASSP.2007.365976
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_4217148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4217148</ieee_id><sourcerecordid>oai_HAL_hal_00196739v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h253t-9bb72cd88ebdcdbc1da92de09a1e81b0987fec114a82daaeb9ce3593962c0fcd3</originalsourceid><addsrcrecordid>eNpVjt9LAkEUhadfkJn_QL3saw9r987M7sx9FLUUjAILeltmZ646sbqyK4L_fYYR9HTgOx-HI8QdQh8R6HE6HMznb30JYPoqz8jkZ6JHxqKWWoORNj8XHakMpUjwefGvM3QpOphJSHPUdC1u2vYLAKzRtiPkS91sV3VVL6N3VTKKe27auDskbhOS-dY1LSfTtVtyMuJNHdu4Wd6Kq4WrWu79Zld8PI3fh5N09vp8_DlLVzJTu5TK0kgfrOUy-FB6DI5kYCCHbLEEsmbBHlE7K4NzXJJnlZGiXHpY-KC64uG0u3JVsW3i2jWHonaxmAxmxQ8DQMqNoj0e3fuTG5n5T9YSDWqrvgF1KVi1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Morphological Diversity and Sparse Image Denoising</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fadili, M. J. ; Starck, J. -L. ; Boubchir, L.</creator><creatorcontrib>Fadili, M. J. ; Starck, J. -L. ; Boubchir, L.</creatorcontrib><description>Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear transforms. Rather than using the basic approach where the denoised image is obtained by simple averaging of denoised estimates provided by each sparse transform, we here develop an elegant Bayesian framework to optimally combine the individual estimates. Our derivation of the optimally combined denoiser relies on a scale mixture of Gaussian (SMG) prior on the coefficients in each representation transform. Exploiting this prior, we design a Bayesian ℓ 2 -risk (mean field) nonlinear estimator and we derive a closed-form for its expression when the SMG specializes to the Bessel K form prior. Experimental results are carried out to show the striking profits gained from exploiting sparsity of data and their morphological diversity.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424407279</identifier><identifier>ISBN: 1424407273</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781424407286</identifier><identifier>EISBN: 1424407281</identifier><identifier>DOI: 10.1109/ICASSP.2007.365976</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian combined denoising ; Bayesian methods ; Computer Science ; Data Structures and Algorithms ; Dictionaries ; Discrete cosine transforms ; Harmonic analysis ; Image coding ; Image denoising ; Image restoration ; Morphological diversity ; Signal restoration ; Sparsity ; Wavelet analysis ; Wavelet transforms</subject><ispartof>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.1, p.I-589-I-592</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4217148$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,778,782,787,788,883,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4217148$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00196739$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fadili, M. J.</creatorcontrib><creatorcontrib>Starck, J. -L.</creatorcontrib><creatorcontrib>Boubchir, L.</creatorcontrib><title>Morphological Diversity and Sparse Image Denoising</title><title>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</title><addtitle>ICASSP</addtitle><description>Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear transforms. Rather than using the basic approach where the denoised image is obtained by simple averaging of denoised estimates provided by each sparse transform, we here develop an elegant Bayesian framework to optimally combine the individual estimates. Our derivation of the optimally combined denoiser relies on a scale mixture of Gaussian (SMG) prior on the coefficients in each representation transform. Exploiting this prior, we design a Bayesian ℓ 2 -risk (mean field) nonlinear estimator and we derive a closed-form for its expression when the SMG specializes to the Bessel K form prior. Experimental results are carried out to show the striking profits gained from exploiting sparsity of data and their morphological diversity.</description><subject>Bayesian combined denoising</subject><subject>Bayesian methods</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Dictionaries</subject><subject>Discrete cosine transforms</subject><subject>Harmonic analysis</subject><subject>Image coding</subject><subject>Image denoising</subject><subject>Image restoration</subject><subject>Morphological diversity</subject><subject>Signal restoration</subject><subject>Sparsity</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424407279</isbn><isbn>1424407273</isbn><isbn>9781424407286</isbn><isbn>1424407281</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjt9LAkEUhadfkJn_QL3saw9r987M7sx9FLUUjAILeltmZ646sbqyK4L_fYYR9HTgOx-HI8QdQh8R6HE6HMznb30JYPoqz8jkZ6JHxqKWWoORNj8XHakMpUjwefGvM3QpOphJSHPUdC1u2vYLAKzRtiPkS91sV3VVL6N3VTKKe27auDskbhOS-dY1LSfTtVtyMuJNHdu4Wd6Kq4WrWu79Zld8PI3fh5N09vp8_DlLVzJTu5TK0kgfrOUy-FB6DI5kYCCHbLEEsmbBHlE7K4NzXJJnlZGiXHpY-KC64uG0u3JVsW3i2jWHonaxmAxmxQ8DQMqNoj0e3fuTG5n5T9YSDWqrvgF1KVi1</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Fadili, M. J.</creator><creator>Starck, J. -L.</creator><creator>Boubchir, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>200704</creationdate><title>Morphological Diversity and Sparse Image Denoising</title><author>Fadili, M. J. ; Starck, J. -L. ; Boubchir, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h253t-9bb72cd88ebdcdbc1da92de09a1e81b0987fec114a82daaeb9ce3593962c0fcd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bayesian combined denoising</topic><topic>Bayesian methods</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Dictionaries</topic><topic>Discrete cosine transforms</topic><topic>Harmonic analysis</topic><topic>Image coding</topic><topic>Image denoising</topic><topic>Image restoration</topic><topic>Morphological diversity</topic><topic>Signal restoration</topic><topic>Sparsity</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Fadili, M. J.</creatorcontrib><creatorcontrib>Starck, J. -L.</creatorcontrib><creatorcontrib>Boubchir, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fadili, M. J.</au><au>Starck, J. -L.</au><au>Boubchir, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Morphological Diversity and Sparse Image Denoising</atitle><btitle>2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07</btitle><stitle>ICASSP</stitle><date>2007-04</date><risdate>2007</risdate><volume>1</volume><spage>I-589</spage><epage>I-592</epage><pages>I-589-I-592</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424407279</isbn><isbn>1424407273</isbn><eisbn>9781424407286</eisbn><eisbn>1424407281</eisbn><abstract>Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear transforms. Rather than using the basic approach where the denoised image is obtained by simple averaging of denoised estimates provided by each sparse transform, we here develop an elegant Bayesian framework to optimally combine the individual estimates. Our derivation of the optimally combined denoiser relies on a scale mixture of Gaussian (SMG) prior on the coefficients in each representation transform. Exploiting this prior, we design a Bayesian ℓ 2 -risk (mean field) nonlinear estimator and we derive a closed-form for its expression when the SMG specializes to the Bessel K form prior. Experimental results are carried out to show the striking profits gained from exploiting sparsity of data and their morphological diversity.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2007.365976</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 2007, Vol.1, p.I-589-I-592
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_4217148
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian combined denoising
Bayesian methods
Computer Science
Data Structures and Algorithms
Dictionaries
Discrete cosine transforms
Harmonic analysis
Image coding
Image denoising
Image restoration
Morphological diversity
Signal restoration
Sparsity
Wavelet analysis
Wavelet transforms
title Morphological Diversity and Sparse Image Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Morphological%20Diversity%20and%20Sparse%20Image%20Denoising&rft.btitle=2007%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20-%20ICASSP%20'07&rft.au=Fadili,%20M.%20J.&rft.date=2007-04&rft.volume=1&rft.spage=I-589&rft.epage=I-592&rft.pages=I-589-I-592&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424407279&rft.isbn_list=1424407273&rft_id=info:doi/10.1109/ICASSP.2007.365976&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00196739v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407286&rft.eisbn_list=1424407281&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4217148&rfr_iscdi=true