Grasping POMDPs

We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kaijen Hsiao, Kaelbling, L.P., Lozano-Perez, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4692
container_issue
container_start_page 4685
container_title
container_volume
creator Kaijen Hsiao
Kaelbling, L.P.
Lozano-Perez, T.
description We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions
doi_str_mv 10.1109/ROBOT.2007.364201
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209819</ieee_id><sourcerecordid>4209819</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-95c21b98a1296ced77ca1364c8c6836a5153a71277f73baea19f3d1d710ef46f3</originalsourceid><addsrcrecordid>eNpFj01LAzEURZ9WwWktrsWNfyDje_l6yVKrVqFlSqngrqSZREZUysSN_74DCt7NXRy4nAtwSVgTob9ZN3fNppaIXCurJdIRjElLrdGipGOopGEW6Ph19A9InUBFaFBolv4MpqW84xCDjNZXcDHvQ9l3X2_Xq2Z5vyrncJrDR0nTv57Ay-PDZvYkFs38eXa7EB2x-RbeREk77wJJb2NqmWOgwSq6aJ2ywZBRgUkyZ1a7kAL5rFpqmTBlbbOawNXvbpdS2u777jP0P9vhlXfk1QFEzTpv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grasping POMDPs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</creator><creatorcontrib>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</creatorcontrib><description>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.364201</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feedback ; Motion planning ; Optimal control ; Orbital robotics ; Robot sensing systems ; Robot vision systems ; Robotics and automation ; Robustness ; Shape ; Uncertainty</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.4685-4692</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaijen Hsiao</creatorcontrib><creatorcontrib>Kaelbling, L.P.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><title>Grasping POMDPs</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</description><subject>Feedback</subject><subject>Motion planning</subject><subject>Optimal control</subject><subject>Orbital robotics</subject><subject>Robot sensing systems</subject><subject>Robot vision systems</subject><subject>Robotics and automation</subject><subject>Robustness</subject><subject>Shape</subject><subject>Uncertainty</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj01LAzEURZ9WwWktrsWNfyDje_l6yVKrVqFlSqngrqSZREZUysSN_74DCt7NXRy4nAtwSVgTob9ZN3fNppaIXCurJdIRjElLrdGipGOopGEW6Ph19A9InUBFaFBolv4MpqW84xCDjNZXcDHvQ9l3X2_Xq2Z5vyrncJrDR0nTv57Ay-PDZvYkFs38eXa7EB2x-RbeREk77wJJb2NqmWOgwSq6aJ2ywZBRgUkyZ1a7kAL5rFpqmTBlbbOawNXvbpdS2u777jP0P9vhlXfk1QFEzTpv</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Kaijen Hsiao</creator><creator>Kaelbling, L.P.</creator><creator>Lozano-Perez, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Grasping POMDPs</title><author>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-95c21b98a1296ced77ca1364c8c6836a5153a71277f73baea19f3d1d710ef46f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Feedback</topic><topic>Motion planning</topic><topic>Optimal control</topic><topic>Orbital robotics</topic><topic>Robot sensing systems</topic><topic>Robot vision systems</topic><topic>Robotics and automation</topic><topic>Robustness</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaijen Hsiao</creatorcontrib><creatorcontrib>Kaelbling, L.P.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaijen Hsiao</au><au>Kaelbling, L.P.</au><au>Lozano-Perez, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grasping POMDPs</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>4685</spage><epage>4692</epage><pages>4685-4692</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.364201</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.4685-4692
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_4209819
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feedback
Motion planning
Optimal control
Orbital robotics
Robot sensing systems
Robot vision systems
Robotics and automation
Robustness
Shape
Uncertainty
title Grasping POMDPs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grasping%20POMDPs&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Kaijen%20Hsiao&rft.date=2007-04&rft.spage=4685&rft.epage=4692&rft.pages=4685-4692&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.364201&rft_dat=%3Cieee_6IE%3E4209819%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209819&rfr_iscdi=true