Grasping POMDPs
We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4692 |
---|---|
container_issue | |
container_start_page | 4685 |
container_title | |
container_volume | |
creator | Kaijen Hsiao Kaelbling, L.P. Lozano-Perez, T. |
description | We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions |
doi_str_mv | 10.1109/ROBOT.2007.364201 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209819</ieee_id><sourcerecordid>4209819</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-95c21b98a1296ced77ca1364c8c6836a5153a71277f73baea19f3d1d710ef46f3</originalsourceid><addsrcrecordid>eNpFj01LAzEURZ9WwWktrsWNfyDje_l6yVKrVqFlSqngrqSZREZUysSN_74DCt7NXRy4nAtwSVgTob9ZN3fNppaIXCurJdIRjElLrdGipGOopGEW6Ph19A9InUBFaFBolv4MpqW84xCDjNZXcDHvQ9l3X2_Xq2Z5vyrncJrDR0nTv57Ay-PDZvYkFs38eXa7EB2x-RbeREk77wJJb2NqmWOgwSq6aJ2ywZBRgUkyZ1a7kAL5rFpqmTBlbbOawNXvbpdS2u777jP0P9vhlXfk1QFEzTpv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Grasping POMDPs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</creator><creatorcontrib>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</creatorcontrib><description>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.364201</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feedback ; Motion planning ; Optimal control ; Orbital robotics ; Robot sensing systems ; Robot vision systems ; Robotics and automation ; Robustness ; Shape ; Uncertainty</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.4685-4692</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kaijen Hsiao</creatorcontrib><creatorcontrib>Kaelbling, L.P.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><title>Grasping POMDPs</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</description><subject>Feedback</subject><subject>Motion planning</subject><subject>Optimal control</subject><subject>Orbital robotics</subject><subject>Robot sensing systems</subject><subject>Robot vision systems</subject><subject>Robotics and automation</subject><subject>Robustness</subject><subject>Shape</subject><subject>Uncertainty</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj01LAzEURZ9WwWktrsWNfyDje_l6yVKrVqFlSqngrqSZREZUysSN_74DCt7NXRy4nAtwSVgTob9ZN3fNppaIXCurJdIRjElLrdGipGOopGEW6Ph19A9InUBFaFBolv4MpqW84xCDjNZXcDHvQ9l3X2_Xq2Z5vyrncJrDR0nTv57Ay-PDZvYkFs38eXa7EB2x-RbeREk77wJJb2NqmWOgwSq6aJ2ywZBRgUkyZ1a7kAL5rFpqmTBlbbOawNXvbpdS2u777jP0P9vhlXfk1QFEzTpv</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Kaijen Hsiao</creator><creator>Kaelbling, L.P.</creator><creator>Lozano-Perez, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Grasping POMDPs</title><author>Kaijen Hsiao ; Kaelbling, L.P. ; Lozano-Perez, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-95c21b98a1296ced77ca1364c8c6836a5153a71277f73baea19f3d1d710ef46f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Feedback</topic><topic>Motion planning</topic><topic>Optimal control</topic><topic>Orbital robotics</topic><topic>Robot sensing systems</topic><topic>Robot vision systems</topic><topic>Robotics and automation</topic><topic>Robustness</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kaijen Hsiao</creatorcontrib><creatorcontrib>Kaelbling, L.P.</creatorcontrib><creatorcontrib>Lozano-Perez, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaijen Hsiao</au><au>Kaelbling, L.P.</au><au>Lozano-Perez, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grasping POMDPs</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>4685</spage><epage>4692</epage><pages>4685-4692</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>We provide a method for planning under uncertainty for robotic manipulation by partitioning the configuration space into a set of regions that are closed under compliant motions. These regions can be treated as states in a partially observable Markov decision process (POMDP), which can be solved to yield optimal control policies under uncertainty. We demonstrate the approach on simple grasping problems, showing that it can construct highly robust, efficiently executable solutions</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.364201</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.4685-4692 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_4209819 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feedback Motion planning Optimal control Orbital robotics Robot sensing systems Robot vision systems Robotics and automation Robustness Shape Uncertainty |
title | Grasping POMDPs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grasping%20POMDPs&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Kaijen%20Hsiao&rft.date=2007-04&rft.spage=4685&rft.epage=4692&rft.pages=4685-4692&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.364201&rft_dat=%3Cieee_6IE%3E4209819%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209819&rfr_iscdi=true |