An accurate closed-form estimate of ICP's covariance

Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Censi, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3172
container_issue
container_start_page 3167
container_title
container_volume
creator Censi, A.
description Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.
doi_str_mv 10.1109/ROBOT.2007.363961
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209579</ieee_id><sourcerecordid>4209579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-7e6209461346578b3f85c4e110842e92dc573bf1a2fc4f68cf37d0166dfa38a13</originalsourceid><addsrcrecordid>eNpFj0tLAzEUheMLHGt_gLiZnauM9yY3r2UtPgqFEangrqSZBEbajkxGwX_fEQXP5sA58HEOY1cIFSK425f6rl5VAsBUUkun8YhdIAki0CDwmBVCGcPBmreT_wLlKSsQFHAywp2zac7vMEqBAe0KRrN96UP47P0Qy7Dtcmx46vpdGfPQ7n7CLpWL-fNNLkP35fvW70O8ZGfJb3Oc_vmEvT7cr-ZPfFk_LuazJW8F4cBN1AIcaZSklbEbmawKFMczlkR0ognKyE1CL1KgpG1I0jSAWjfJS-tRTtj1L7eNMa4_-nFQ_72mEaqMkweOBUfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An accurate closed-form estimate of ICP's covariance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Censi, A.</creator><creatorcontrib>Censi, A.</creatorcontrib><description>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.363961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error analysis ; Impedance matching ; Iterative algorithms ; Iterative closest point algorithm ; Iterative methods ; Performance analysis ; Random variables ; Robot sensing systems ; Robotics and automation ; Simultaneous localization and mapping</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.3167-3172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209579$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Censi, A.</creatorcontrib><title>An accurate closed-form estimate of ICP's covariance</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</description><subject>Error analysis</subject><subject>Impedance matching</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Iterative methods</subject><subject>Performance analysis</subject><subject>Random variables</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Simultaneous localization and mapping</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLAzEUheMLHGt_gLiZnauM9yY3r2UtPgqFEangrqSZBEbajkxGwX_fEQXP5sA58HEOY1cIFSK425f6rl5VAsBUUkun8YhdIAki0CDwmBVCGcPBmreT_wLlKSsQFHAywp2zac7vMEqBAe0KRrN96UP47P0Qy7Dtcmx46vpdGfPQ7n7CLpWL-fNNLkP35fvW70O8ZGfJb3Oc_vmEvT7cr-ZPfFk_LuazJW8F4cBN1AIcaZSklbEbmawKFMczlkR0ognKyE1CL1KgpG1I0jSAWjfJS-tRTtj1L7eNMa4_-nFQ_72mEaqMkweOBUfE</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Censi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>An accurate closed-form estimate of ICP's covariance</title><author>Censi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-7e6209461346578b3f85c4e110842e92dc573bf1a2fc4f68cf37d0166dfa38a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Error analysis</topic><topic>Impedance matching</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Iterative methods</topic><topic>Performance analysis</topic><topic>Random variables</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Censi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Censi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An accurate closed-form estimate of ICP's covariance</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>3167</spage><epage>3172</epage><pages>3167-3172</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.363961</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.3167-3172
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_4209579
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Error analysis
Impedance matching
Iterative algorithms
Iterative closest point algorithm
Iterative methods
Performance analysis
Random variables
Robot sensing systems
Robotics and automation
Simultaneous localization and mapping
title An accurate closed-form estimate of ICP's covariance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20accurate%20closed-form%20estimate%20of%20ICP's%20covariance&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Censi,%20A.&rft.date=2007-04&rft.spage=3167&rft.epage=3172&rft.pages=3167-3172&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.363961&rft_dat=%3Cieee_6IE%3E4209579%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209579&rfr_iscdi=true