An accurate closed-form estimate of ICP's covariance
Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3172 |
---|---|
container_issue | |
container_start_page | 3167 |
container_title | |
container_volume | |
creator | Censi, A. |
description | Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold. |
doi_str_mv | 10.1109/ROBOT.2007.363961 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209579</ieee_id><sourcerecordid>4209579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-7e6209461346578b3f85c4e110842e92dc573bf1a2fc4f68cf37d0166dfa38a13</originalsourceid><addsrcrecordid>eNpFj0tLAzEUheMLHGt_gLiZnauM9yY3r2UtPgqFEangrqSZBEbajkxGwX_fEQXP5sA58HEOY1cIFSK425f6rl5VAsBUUkun8YhdIAki0CDwmBVCGcPBmreT_wLlKSsQFHAywp2zac7vMEqBAe0KRrN96UP47P0Qy7Dtcmx46vpdGfPQ7n7CLpWL-fNNLkP35fvW70O8ZGfJb3Oc_vmEvT7cr-ZPfFk_LuazJW8F4cBN1AIcaZSklbEbmawKFMczlkR0ognKyE1CL1KgpG1I0jSAWjfJS-tRTtj1L7eNMa4_-nFQ_72mEaqMkweOBUfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An accurate closed-form estimate of ICP's covariance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Censi, A.</creator><creatorcontrib>Censi, A.</creatorcontrib><description>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.363961</identifier><language>eng</language><publisher>IEEE</publisher><subject>Error analysis ; Impedance matching ; Iterative algorithms ; Iterative closest point algorithm ; Iterative methods ; Performance analysis ; Random variables ; Robot sensing systems ; Robotics and automation ; Simultaneous localization and mapping</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.3167-3172</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209579$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Censi, A.</creatorcontrib><title>An accurate closed-form estimate of ICP's covariance</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</description><subject>Error analysis</subject><subject>Impedance matching</subject><subject>Iterative algorithms</subject><subject>Iterative closest point algorithm</subject><subject>Iterative methods</subject><subject>Performance analysis</subject><subject>Random variables</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Simultaneous localization and mapping</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0tLAzEUheMLHGt_gLiZnauM9yY3r2UtPgqFEangrqSZBEbajkxGwX_fEQXP5sA58HEOY1cIFSK425f6rl5VAsBUUkun8YhdIAki0CDwmBVCGcPBmreT_wLlKSsQFHAywp2zac7vMEqBAe0KRrN96UP47P0Qy7Dtcmx46vpdGfPQ7n7CLpWL-fNNLkP35fvW70O8ZGfJb3Oc_vmEvT7cr-ZPfFk_LuazJW8F4cBN1AIcaZSklbEbmawKFMczlkR0ognKyE1CL1KgpG1I0jSAWjfJS-tRTtj1L7eNMa4_-nFQ_72mEaqMkweOBUfE</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Censi, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>An accurate closed-form estimate of ICP's covariance</title><author>Censi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-7e6209461346578b3f85c4e110842e92dc573bf1a2fc4f68cf37d0166dfa38a13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Error analysis</topic><topic>Impedance matching</topic><topic>Iterative algorithms</topic><topic>Iterative closest point algorithm</topic><topic>Iterative methods</topic><topic>Performance analysis</topic><topic>Random variables</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Censi, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Censi, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An accurate closed-form estimate of ICP's covariance</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>3167</spage><epage>3172</epage><pages>3167-3172</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>Existing methods for estimating the covariance of the ICP (iterative closest/corresponding point) algorithm are either inaccurate or are computationally too expensive to be used online. This paper proposes a new method, based on the analysis of the error function being minimized. It considers that the correspondences are not independent (the same measurement being used in more than one correspondence), and explicitly utilizes the covariance matrix of the measurements, which are not assumed to be independent either. The validity of the approach is verified through extensive simulations: it is more accurate than previous methods and its computational load is negligible. The ill-posedness of the surface matching problem is explicitly tackled for under-constrained situations by performing an observability analysis; in the analyzed cases the method still provides a good estimate of the error projected on the observable manifold.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.363961</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.3167-3172 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_4209579 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Error analysis Impedance matching Iterative algorithms Iterative closest point algorithm Iterative methods Performance analysis Random variables Robot sensing systems Robotics and automation Simultaneous localization and mapping |
title | An accurate closed-form estimate of ICP's covariance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20accurate%20closed-form%20estimate%20of%20ICP's%20covariance&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Censi,%20A.&rft.date=2007-04&rft.spage=3167&rft.epage=3172&rft.pages=3167-3172&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.363961&rft_dat=%3Cieee_6IE%3E4209579%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209579&rfr_iscdi=true |