Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft
In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1356 |
---|---|
container_issue | |
container_start_page | 1349 |
container_title | |
container_volume | |
creator | Templeton, T. Shim, D.H. Geyer, C. Sastry, S.S. |
description | In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV. |
doi_str_mv | 10.1109/ROBOT.2007.363172 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209276</ieee_id><sourcerecordid>4209276</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65b98ca1d528ba78520fb9c7ebcb163700fe2a41e2bd0be3c28c013dfd4179a63</originalsourceid><addsrcrecordid>eNpFT0trAjEYTF9Qa_0BpZf9A7Ff3pujFfsAxSJaepMkmy0pmkiyHvrvu8VC5zLDDDMwCN0RGBMC-mG1fFyuxxRAjZlkRNEzdEM45RwkUHKOBlQohaFWHxf_AWGXaEBAAOaK6ms0KuULeghQIPUAbSfHLsW0T8dSvYcSUsTWFN9UcxObED-rnqq1z9mEWC3M4fDrbcopqRZvU-xS7HLa7frOJu5NjL1YpS5ll03b3aKr1uyKH_3xEG2eZuvpC54vn1-nkzkORIkOS2F17QxpBK2tUbWg0FrtlLfOEskUQOup4cRT24D1zNHa9d-atuFEaSPZEN2fdoP3fnvIYW_y95ZT0FRJ9gMRZ1k7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</creator><creatorcontrib>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</creatorcontrib><description>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.363172</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; Cameras ; Image analysis ; Machine vision ; Predictive control ; Predictive models ; Recursive estimation ; Terrain mapping ; Trajectory ; Unmanned aerial vehicles</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.1349-1356</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Templeton, T.</creatorcontrib><creatorcontrib>Shim, D.H.</creatorcontrib><creatorcontrib>Geyer, C.</creatorcontrib><creatorcontrib>Sastry, S.S.</creatorcontrib><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</description><subject>Aerospace control</subject><subject>Cameras</subject><subject>Image analysis</subject><subject>Machine vision</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Recursive estimation</subject><subject>Terrain mapping</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT0trAjEYTF9Qa_0BpZf9A7Ff3pujFfsAxSJaepMkmy0pmkiyHvrvu8VC5zLDDDMwCN0RGBMC-mG1fFyuxxRAjZlkRNEzdEM45RwkUHKOBlQohaFWHxf_AWGXaEBAAOaK6ms0KuULeghQIPUAbSfHLsW0T8dSvYcSUsTWFN9UcxObED-rnqq1z9mEWC3M4fDrbcopqRZvU-xS7HLa7frOJu5NjL1YpS5ll03b3aKr1uyKH_3xEG2eZuvpC54vn1-nkzkORIkOS2F17QxpBK2tUbWg0FrtlLfOEskUQOup4cRT24D1zNHa9d-atuFEaSPZEN2fdoP3fnvIYW_y95ZT0FRJ9gMRZ1k7</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Templeton, T.</creator><creator>Shim, D.H.</creator><creator>Geyer, C.</creator><creator>Sastry, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><author>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65b98ca1d528ba78520fb9c7ebcb163700fe2a41e2bd0be3c28c013dfd4179a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace control</topic><topic>Cameras</topic><topic>Image analysis</topic><topic>Machine vision</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Recursive estimation</topic><topic>Terrain mapping</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Templeton, T.</creatorcontrib><creatorcontrib>Shim, D.H.</creatorcontrib><creatorcontrib>Geyer, C.</creatorcontrib><creatorcontrib>Sastry, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Templeton, T.</au><au>Shim, D.H.</au><au>Geyer, C.</au><au>Sastry, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>1349</spage><epage>1356</epage><pages>1349-1356</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.363172</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.1349-1356 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_4209276 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace control Cameras Image analysis Machine vision Predictive control Predictive models Recursive estimation Terrain mapping Trajectory Unmanned aerial vehicles |
title | Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autonomous%20Vision-based%20Landing%20and%20Terrain%20Mapping%20Using%20an%20MPC-controlled%20Unmanned%20Rotorcraft&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Templeton,%20T.&rft.date=2007-04&rft.spage=1349&rft.epage=1356&rft.pages=1349-1356&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.363172&rft_dat=%3Cieee_6IE%3E4209276%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209276&rfr_iscdi=true |