Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft

In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Templeton, T., Shim, D.H., Geyer, C., Sastry, S.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1356
container_issue
container_start_page 1349
container_title
container_volume
creator Templeton, T.
Shim, D.H.
Geyer, C.
Sastry, S.S.
description In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.
doi_str_mv 10.1109/ROBOT.2007.363172
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4209276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4209276</ieee_id><sourcerecordid>4209276</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65b98ca1d528ba78520fb9c7ebcb163700fe2a41e2bd0be3c28c013dfd4179a63</originalsourceid><addsrcrecordid>eNpFT0trAjEYTF9Qa_0BpZf9A7Ff3pujFfsAxSJaepMkmy0pmkiyHvrvu8VC5zLDDDMwCN0RGBMC-mG1fFyuxxRAjZlkRNEzdEM45RwkUHKOBlQohaFWHxf_AWGXaEBAAOaK6ms0KuULeghQIPUAbSfHLsW0T8dSvYcSUsTWFN9UcxObED-rnqq1z9mEWC3M4fDrbcopqRZvU-xS7HLa7frOJu5NjL1YpS5ll03b3aKr1uyKH_3xEG2eZuvpC54vn1-nkzkORIkOS2F17QxpBK2tUbWg0FrtlLfOEskUQOup4cRT24D1zNHa9d-atuFEaSPZEN2fdoP3fnvIYW_y95ZT0FRJ9gMRZ1k7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</creator><creatorcontrib>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</creatorcontrib><description>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 1424406013</identifier><identifier>ISBN: 9781424406012</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424406021</identifier><identifier>EISBN: 9781424406029</identifier><identifier>DOI: 10.1109/ROBOT.2007.363172</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; Cameras ; Image analysis ; Machine vision ; Predictive control ; Predictive models ; Recursive estimation ; Terrain mapping ; Trajectory ; Unmanned aerial vehicles</subject><ispartof>Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.1349-1356</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4209276$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4209276$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Templeton, T.</creatorcontrib><creatorcontrib>Shim, D.H.</creatorcontrib><creatorcontrib>Geyer, C.</creatorcontrib><creatorcontrib>Sastry, S.S.</creatorcontrib><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><title>Proceedings 2007 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</description><subject>Aerospace control</subject><subject>Cameras</subject><subject>Image analysis</subject><subject>Machine vision</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Recursive estimation</subject><subject>Terrain mapping</subject><subject>Trajectory</subject><subject>Unmanned aerial vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>1424406013</isbn><isbn>9781424406012</isbn><isbn>1424406021</isbn><isbn>9781424406029</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT0trAjEYTF9Qa_0BpZf9A7Ff3pujFfsAxSJaepMkmy0pmkiyHvrvu8VC5zLDDDMwCN0RGBMC-mG1fFyuxxRAjZlkRNEzdEM45RwkUHKOBlQohaFWHxf_AWGXaEBAAOaK6ms0KuULeghQIPUAbSfHLsW0T8dSvYcSUsTWFN9UcxObED-rnqq1z9mEWC3M4fDrbcopqRZvU-xS7HLa7frOJu5NjL1YpS5ll03b3aKr1uyKH_3xEG2eZuvpC54vn1-nkzkORIkOS2F17QxpBK2tUbWg0FrtlLfOEskUQOup4cRT24D1zNHa9d-atuFEaSPZEN2fdoP3fnvIYW_y95ZT0FRJ9gMRZ1k7</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Templeton, T.</creator><creator>Shim, D.H.</creator><creator>Geyer, C.</creator><creator>Sastry, S.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200704</creationdate><title>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</title><author>Templeton, T. ; Shim, D.H. ; Geyer, C. ; Sastry, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65b98ca1d528ba78520fb9c7ebcb163700fe2a41e2bd0be3c28c013dfd4179a63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerospace control</topic><topic>Cameras</topic><topic>Image analysis</topic><topic>Machine vision</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Recursive estimation</topic><topic>Terrain mapping</topic><topic>Trajectory</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Templeton, T.</creatorcontrib><creatorcontrib>Shim, D.H.</creatorcontrib><creatorcontrib>Geyer, C.</creatorcontrib><creatorcontrib>Sastry, S.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Templeton, T.</au><au>Shim, D.H.</au><au>Geyer, C.</au><au>Sastry, S.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft</atitle><btitle>Proceedings 2007 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2007-04</date><risdate>2007</risdate><spage>1349</spage><epage>1356</epage><pages>1349-1356</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>1424406013</isbn><isbn>9781424406012</isbn><eisbn>1424406021</eisbn><eisbn>9781424406029</eisbn><abstract>In this paper, we present a vision-based terrain mapping and analysis system, and a model predictive control (MPC)-based flight control system, for autonomous landing of a helicopter-based unmanned aerial vehicle (UAV) in unknown terrain. The vision system is centered around Geyer et al.'s recursive multi-frame planar parallax algorithm (2006), which accurately estimates 3D structure using geo-referenced images from a single camera, as well as a modular and efficient mapping and terrain analysis module. The vision system determines the best trajectory to cover large areas of terrain or to perform closer inspection of potential landing sites, and the flight control system guides the vehicle through the requested flight pattern by tracking the reference trajectory as computed by a real-time MPC-based optimization. This trajectory layer, which uses a constrained system model, provides an abstraction between the vision system and the vehicle. Both vision and flight control results are given from flight tests with an electric UAV.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2007.363172</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, p.1349-1356
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_4209276
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace control
Cameras
Image analysis
Machine vision
Predictive control
Predictive models
Recursive estimation
Terrain mapping
Trajectory
Unmanned aerial vehicles
title Autonomous Vision-based Landing and Terrain Mapping Using an MPC-controlled Unmanned Rotorcraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Autonomous%20Vision-based%20Landing%20and%20Terrain%20Mapping%20Using%20an%20MPC-controlled%20Unmanned%20Rotorcraft&rft.btitle=Proceedings%202007%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Templeton,%20T.&rft.date=2007-04&rft.spage=1349&rft.epage=1356&rft.pages=1349-1356&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=1424406013&rft.isbn_list=9781424406012&rft_id=info:doi/10.1109/ROBOT.2007.363172&rft_dat=%3Cieee_6IE%3E4209276%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424406021&rft.eisbn_list=9781424406029&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4209276&rfr_iscdi=true