Affine Normalized Invariant functionals using Independent Component Analysis

The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The presented technique first normalizes an input image by removing affine distortions using independent component analysis which also reduces the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Asad Ali, Gilani, A.M., Memon, N.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 94
container_title
container_volume
creator Asad Ali
Gilani, A.M.
Memon, N.A.
description The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The presented technique first normalizes an input image by removing affine distortions using independent component analysis which also reduces the effect of noise introduced during contour parameterization. Then two invariant functionals are constructed, one using the normalized object contour and the other using the dyadic wavelet transform. Experimental results conducted using three different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to other wavelet based techniques and the proposed invariants exhibit higher feature disparity than the method of Fourier descriptors.
doi_str_mv 10.1109/INMIC.2006.358143
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4196386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4196386</ieee_id><sourcerecordid>4196386</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a0cd4257185bcc6eb75897557ae26c175b1ba074bb277fb3388987288432ba563</originalsourceid><addsrcrecordid>eNpFjMtKxDAYhSMiqOM8gLjpC7Tm_ifLUrwU6riZAXdD0qYSmaal6Qjj0xtRcHMunI-D0C3BBSFY39ebl7oqKMayYEIRzs7QNeGUcwxaqPP_wt8u0TrGD4wxAcm05leoKfveB5dtxnkwB__luqwOn2b2JixZfwzt4sdgDjE7Rh_e09a5ySVJazUO0xh-UpmIU_TxBl30iXXrP1-h3ePDtnrOm9enuiqb3BMQS25w23EqgChh21Y6C0JpEAKMo7JNiCXWYODWUoDeMqaUVkCV4oxaIyRbobvfX--c20-zH8x82nOiJVOSfQPIHU5f</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Affine Normalized Invariant functionals using Independent Component Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Asad Ali ; Gilani, A.M. ; Memon, N.A.</creator><creatorcontrib>Asad Ali ; Gilani, A.M. ; Memon, N.A.</creatorcontrib><description>The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The presented technique first normalizes an input image by removing affine distortions using independent component analysis which also reduces the effect of noise introduced during contour parameterization. Then two invariant functionals are constructed, one using the normalized object contour and the other using the dyadic wavelet transform. Experimental results conducted using three different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to other wavelet based techniques and the proposed invariants exhibit higher feature disparity than the method of Fourier descriptors.</description><identifier>ISBN: 142440794X</identifier><identifier>ISBN: 9781424407941</identifier><identifier>EISBN: 1424407958</identifier><identifier>EISBN: 9781424407958</identifier><identifier>DOI: 10.1109/INMIC.2006.358143</identifier><language>eng</language><publisher>IEEE</publisher><subject>Affine invariants ; Character recognition ; Computer science ; Dyadic Wavelet Transform ; Error analysis ; Feature extraction ; Geometric Transformations ; Independent component analysis ; Noise reduction ; Object recognition ; Paper technology ; Pattern recognition ; Shearing ; Wavelet transforms</subject><ispartof>2006 IEEE International Multitopic Conference, 2006, p.94-99</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4196386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4196386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asad Ali</creatorcontrib><creatorcontrib>Gilani, A.M.</creatorcontrib><creatorcontrib>Memon, N.A.</creatorcontrib><title>Affine Normalized Invariant functionals using Independent Component Analysis</title><title>2006 IEEE International Multitopic Conference</title><addtitle>INMIC</addtitle><description>The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The presented technique first normalizes an input image by removing affine distortions using independent component analysis which also reduces the effect of noise introduced during contour parameterization. Then two invariant functionals are constructed, one using the normalized object contour and the other using the dyadic wavelet transform. Experimental results conducted using three different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to other wavelet based techniques and the proposed invariants exhibit higher feature disparity than the method of Fourier descriptors.</description><subject>Affine invariants</subject><subject>Character recognition</subject><subject>Computer science</subject><subject>Dyadic Wavelet Transform</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Geometric Transformations</subject><subject>Independent component analysis</subject><subject>Noise reduction</subject><subject>Object recognition</subject><subject>Paper technology</subject><subject>Pattern recognition</subject><subject>Shearing</subject><subject>Wavelet transforms</subject><isbn>142440794X</isbn><isbn>9781424407941</isbn><isbn>1424407958</isbn><isbn>9781424407958</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjMtKxDAYhSMiqOM8gLjpC7Tm_ifLUrwU6riZAXdD0qYSmaal6Qjj0xtRcHMunI-D0C3BBSFY39ebl7oqKMayYEIRzs7QNeGUcwxaqPP_wt8u0TrGD4wxAcm05leoKfveB5dtxnkwB__luqwOn2b2JixZfwzt4sdgDjE7Rh_e09a5ySVJazUO0xh-UpmIU_TxBl30iXXrP1-h3ePDtnrOm9enuiqb3BMQS25w23EqgChh21Y6C0JpEAKMo7JNiCXWYODWUoDeMqaUVkCV4oxaIyRbobvfX--c20-zH8x82nOiJVOSfQPIHU5f</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Asad Ali</creator><creator>Gilani, A.M.</creator><creator>Memon, N.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200612</creationdate><title>Affine Normalized Invariant functionals using Independent Component Analysis</title><author>Asad Ali ; Gilani, A.M. ; Memon, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a0cd4257185bcc6eb75897557ae26c175b1ba074bb277fb3388987288432ba563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Affine invariants</topic><topic>Character recognition</topic><topic>Computer science</topic><topic>Dyadic Wavelet Transform</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Geometric Transformations</topic><topic>Independent component analysis</topic><topic>Noise reduction</topic><topic>Object recognition</topic><topic>Paper technology</topic><topic>Pattern recognition</topic><topic>Shearing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Asad Ali</creatorcontrib><creatorcontrib>Gilani, A.M.</creatorcontrib><creatorcontrib>Memon, N.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asad Ali</au><au>Gilani, A.M.</au><au>Memon, N.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Affine Normalized Invariant functionals using Independent Component Analysis</atitle><btitle>2006 IEEE International Multitopic Conference</btitle><stitle>INMIC</stitle><date>2006-12</date><risdate>2006</risdate><spage>94</spage><epage>99</epage><pages>94-99</pages><isbn>142440794X</isbn><isbn>9781424407941</isbn><eisbn>1424407958</eisbn><eisbn>9781424407958</eisbn><abstract>The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition based on parameterized contour. The presented technique first normalizes an input image by removing affine distortions using independent component analysis which also reduces the effect of noise introduced during contour parameterization. Then two invariant functionals are constructed, one using the normalized object contour and the other using the dyadic wavelet transform. Experimental results conducted using three different standard datasets confirm the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are significantly lower when compared to other wavelet based techniques and the proposed invariants exhibit higher feature disparity than the method of Fourier descriptors.</abstract><pub>IEEE</pub><doi>10.1109/INMIC.2006.358143</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 142440794X
ispartof 2006 IEEE International Multitopic Conference, 2006, p.94-99
issn
language eng
recordid cdi_ieee_primary_4196386
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Affine invariants
Character recognition
Computer science
Dyadic Wavelet Transform
Error analysis
Feature extraction
Geometric Transformations
Independent component analysis
Noise reduction
Object recognition
Paper technology
Pattern recognition
Shearing
Wavelet transforms
title Affine Normalized Invariant functionals using Independent Component Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Affine%20Normalized%20Invariant%20functionals%20using%20Independent%20Component%20Analysis&rft.btitle=2006%20IEEE%20International%20Multitopic%20Conference&rft.au=Asad%20Ali&rft.date=2006-12&rft.spage=94&rft.epage=99&rft.pages=94-99&rft.isbn=142440794X&rft.isbn_list=9781424407941&rft_id=info:doi/10.1109/INMIC.2006.358143&rft_dat=%3Cieee_6IE%3E4196386%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424407958&rft.eisbn_list=9781424407958&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4196386&rfr_iscdi=true