Positive observation problem for linear discrete positive systems
This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also s...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4733 |
---|---|
container_issue | |
container_start_page | 4729 |
container_title | |
container_volume | |
creator | Rami, M.A. Tadeo, F. |
description | This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach |
doi_str_mv | 10.1109/CDC.2006.377749 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177556</ieee_id><sourcerecordid>4177556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25b7e7a337cd4b3d3c5cea1f459cb9a6bdfffd0de4e12fef32ef0c989834e8e63</originalsourceid><addsrcrecordid>eNo1zLtOwzAUgGFLgEQpnRlY8gIp5_gaj1W4SpVggLny5VgySprIjir17RmA6Z--n7E7hC0i2If-sd9yAL0VxhhpL9jGmg4llxLQIFyyFaDFlnPU1-ym1m8A6EDrFdt9TDUv-UTN5CuVk1vydGzmMvmBxiZNpRnykVxpYq6h0ELN_A_quS401lt2ldxQafPXNft6fvrsX9v9-8tbv9u3GY1aWq68IeOEMCFKL6IIKpDDJJUN3jrtY0opQiRJyBMlwSlBsJ3thKSOtFiz-99vJqLDXPLoyvkg0RiltPgBo1FL2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Positive observation problem for linear discrete positive systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rami, M.A. ; Tadeo, F.</creator><creatorcontrib>Rami, M.A. ; Tadeo, F.</creatorcontrib><description>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.377749</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical processes ; compartmental systems ; Control systems ; Feedback ; Linear programming ; Linear systems ; Liquids ; Observers ; positive observation ; positive observers ; positive systems ; State estimation ; Temperature ; USA Councils</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.4729-4733</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rami, M.A.</creatorcontrib><creatorcontrib>Tadeo, F.</creatorcontrib><title>Positive observation problem for linear discrete positive systems</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</description><subject>Chemical processes</subject><subject>compartmental systems</subject><subject>Control systems</subject><subject>Feedback</subject><subject>Linear programming</subject><subject>Linear systems</subject><subject>Liquids</subject><subject>Observers</subject><subject>positive observation</subject><subject>positive observers</subject><subject>positive systems</subject><subject>State estimation</subject><subject>Temperature</subject><subject>USA Councils</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1zLtOwzAUgGFLgEQpnRlY8gIp5_gaj1W4SpVggLny5VgySprIjir17RmA6Z--n7E7hC0i2If-sd9yAL0VxhhpL9jGmg4llxLQIFyyFaDFlnPU1-ym1m8A6EDrFdt9TDUv-UTN5CuVk1vydGzmMvmBxiZNpRnykVxpYq6h0ELN_A_quS401lt2ldxQafPXNft6fvrsX9v9-8tbv9u3GY1aWq68IeOEMCFKL6IIKpDDJJUN3jrtY0opQiRJyBMlwSlBsJ3thKSOtFiz-99vJqLDXPLoyvkg0RiltPgBo1FL2Q</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Rami, M.A.</creator><creator>Tadeo, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Positive observation problem for linear discrete positive systems</title><author>Rami, M.A. ; Tadeo, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25b7e7a337cd4b3d3c5cea1f459cb9a6bdfffd0de4e12fef32ef0c989834e8e63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical processes</topic><topic>compartmental systems</topic><topic>Control systems</topic><topic>Feedback</topic><topic>Linear programming</topic><topic>Linear systems</topic><topic>Liquids</topic><topic>Observers</topic><topic>positive observation</topic><topic>positive observers</topic><topic>positive systems</topic><topic>State estimation</topic><topic>Temperature</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Rami, M.A.</creatorcontrib><creatorcontrib>Tadeo, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rami, M.A.</au><au>Tadeo, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Positive observation problem for linear discrete positive systems</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>4729</spage><epage>4733</epage><pages>4729-4733</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.377749</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.4729-4733 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_4177556 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chemical processes compartmental systems Control systems Feedback Linear programming Linear systems Liquids Observers positive observation positive observers positive systems State estimation Temperature USA Councils |
title | Positive observation problem for linear discrete positive systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Positive%20observation%20problem%20for%20linear%20discrete%20positive%20systems&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Rami,%20M.A.&rft.date=2006-12&rft.spage=4729&rft.epage=4733&rft.pages=4729-4733&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.377749&rft_dat=%3Cieee_6IE%3E4177556%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177556&rfr_iscdi=true |