Positive observation problem for linear discrete positive systems

This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rami, M.A., Tadeo, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4733
container_issue
container_start_page 4729
container_title
container_volume
creator Rami, M.A.
Tadeo, F.
description This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach
doi_str_mv 10.1109/CDC.2006.377749
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177556</ieee_id><sourcerecordid>4177556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25b7e7a337cd4b3d3c5cea1f459cb9a6bdfffd0de4e12fef32ef0c989834e8e63</originalsourceid><addsrcrecordid>eNo1zLtOwzAUgGFLgEQpnRlY8gIp5_gaj1W4SpVggLny5VgySprIjir17RmA6Z--n7E7hC0i2If-sd9yAL0VxhhpL9jGmg4llxLQIFyyFaDFlnPU1-ym1m8A6EDrFdt9TDUv-UTN5CuVk1vydGzmMvmBxiZNpRnykVxpYq6h0ELN_A_quS401lt2ldxQafPXNft6fvrsX9v9-8tbv9u3GY1aWq68IeOEMCFKL6IIKpDDJJUN3jrtY0opQiRJyBMlwSlBsJ3thKSOtFiz-99vJqLDXPLoyvkg0RiltPgBo1FL2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Positive observation problem for linear discrete positive systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rami, M.A. ; Tadeo, F.</creator><creatorcontrib>Rami, M.A. ; Tadeo, F.</creatorcontrib><description>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.377749</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chemical processes ; compartmental systems ; Control systems ; Feedback ; Linear programming ; Linear systems ; Liquids ; Observers ; positive observation ; positive observers ; positive systems ; State estimation ; Temperature ; USA Councils</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.4729-4733</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rami, M.A.</creatorcontrib><creatorcontrib>Tadeo, F.</creatorcontrib><title>Positive observation problem for linear discrete positive systems</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</description><subject>Chemical processes</subject><subject>compartmental systems</subject><subject>Control systems</subject><subject>Feedback</subject><subject>Linear programming</subject><subject>Linear systems</subject><subject>Liquids</subject><subject>Observers</subject><subject>positive observation</subject><subject>positive observers</subject><subject>positive systems</subject><subject>State estimation</subject><subject>Temperature</subject><subject>USA Councils</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1zLtOwzAUgGFLgEQpnRlY8gIp5_gaj1W4SpVggLny5VgySprIjir17RmA6Z--n7E7hC0i2If-sd9yAL0VxhhpL9jGmg4llxLQIFyyFaDFlnPU1-ym1m8A6EDrFdt9TDUv-UTN5CuVk1vydGzmMvmBxiZNpRnykVxpYq6h0ELN_A_quS401lt2ldxQafPXNft6fvrsX9v9-8tbv9u3GY1aWq68IeOEMCFKL6IIKpDDJJUN3jrtY0opQiRJyBMlwSlBsJ3thKSOtFiz-99vJqLDXPLoyvkg0RiltPgBo1FL2Q</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Rami, M.A.</creator><creator>Tadeo, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Positive observation problem for linear discrete positive systems</title><author>Rami, M.A. ; Tadeo, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25b7e7a337cd4b3d3c5cea1f459cb9a6bdfffd0de4e12fef32ef0c989834e8e63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemical processes</topic><topic>compartmental systems</topic><topic>Control systems</topic><topic>Feedback</topic><topic>Linear programming</topic><topic>Linear systems</topic><topic>Liquids</topic><topic>Observers</topic><topic>positive observation</topic><topic>positive observers</topic><topic>positive systems</topic><topic>State estimation</topic><topic>Temperature</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Rami, M.A.</creatorcontrib><creatorcontrib>Tadeo, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rami, M.A.</au><au>Tadeo, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Positive observation problem for linear discrete positive systems</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>4729</spage><epage>4733</epage><pages>4729-4733</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>This paper provides a new treatment of the theory of positive observers for discrete linear positive systems. The provided conditions for the existence of a positive observer are necessary and sufficient and solvable in terms of linear programming. Unlike the classical theory of observers, we also show that it is no longer possible to stabilize any unstable positive system by using positive observers. Numerical examples are given to show the applicability of the proposed approach</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.377749</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.4729-4733
issn 0191-2216
language eng
recordid cdi_ieee_primary_4177556
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chemical processes
compartmental systems
Control systems
Feedback
Linear programming
Linear systems
Liquids
Observers
positive observation
positive observers
positive systems
State estimation
Temperature
USA Councils
title Positive observation problem for linear discrete positive systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Positive%20observation%20problem%20for%20linear%20discrete%20positive%20systems&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Rami,%20M.A.&rft.date=2006-12&rft.spage=4729&rft.epage=4733&rft.pages=4729-4733&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.377749&rft_dat=%3Cieee_6IE%3E4177556%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177556&rfr_iscdi=true