Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment

Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krishnamurthy, V., Yin, G., Maskery, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2056
container_issue
container_start_page 2051
container_title
container_volume
creator Krishnamurthy, V.
Yin, G.
Maskery, M.
description Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor
doi_str_mv 10.1109/CDC.2006.376889
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177325</ieee_id><sourcerecordid>4177325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-324c519a04299d35ab0d6c84f4b0909031678d3c490ad126fbb0a30d87947b263</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMqOHXXXniTP9D55mNJczm7OYWh4Ho_0vbtFtc1Nc3QgT_einIuDhweHjiE3DKYMAbmPptnEw6gJkKrNDVnZGx0yiSXEphmcE5GwAxLOGfqklz1_TsApKDUiHyvoy93to-upLOuC_7LHWx0vqUPtseK5sGWe9duqa9p5kPAxsZhXnwcXeOK4CytfaBLe8Ak36EP-Ct6w9K3tdsegy0apGts-wF6wfjpw57OsWv86YBtvCEXtW16HP_3NckfF3n2lKxel8_ZbJU4AzERXJZTZixIbkwlpraASpWprGUBZohgSqeVKKUBWzGu6qIAK6BKtZG64Epck7s_rUPETReGh-G0kUxrwafiB_fpXpM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</creator><creatorcontrib>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</creatorcontrib><description>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.376889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Convergence ; Differential equations ; Fading ; Sensor arrays ; Sensor systems ; Sleep ; Smoothing methods ; Stochastic processes ; Wireless sensor networks</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2051-2056</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><creatorcontrib>Maskery, M.</creatorcontrib><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</description><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Fading</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sleep</subject><subject>Smoothing methods</subject><subject>Stochastic processes</subject><subject>Wireless sensor networks</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMqOHXXXniTP9D55mNJczm7OYWh4Ho_0vbtFtc1Nc3QgT_einIuDhweHjiE3DKYMAbmPptnEw6gJkKrNDVnZGx0yiSXEphmcE5GwAxLOGfqklz1_TsApKDUiHyvoy93to-upLOuC_7LHWx0vqUPtseK5sGWe9duqa9p5kPAxsZhXnwcXeOK4CytfaBLe8Ak36EP-Ct6w9K3tdsegy0apGts-wF6wfjpw57OsWv86YBtvCEXtW16HP_3NckfF3n2lKxel8_ZbJU4AzERXJZTZixIbkwlpraASpWprGUBZohgSqeVKKUBWzGu6qIAK6BKtZG64Epck7s_rUPETReGh-G0kUxrwafiB_fpXpM</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Krishnamurthy, V.</creator><creator>Yin, G.</creator><creator>Maskery, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><author>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-324c519a04299d35ab0d6c84f4b0909031678d3c490ad126fbb0a30d87947b263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Fading</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sleep</topic><topic>Smoothing methods</topic><topic>Stochastic processes</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><creatorcontrib>Maskery, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnamurthy, V.</au><au>Yin, G.</au><au>Maskery, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>2051</spage><epage>2056</epage><pages>2051-2056</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.376889</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2051-2056
issn 0191-2216
language eng
recordid cdi_ieee_primary_4177325
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Convergence
Differential equations
Fading
Sensor arrays
Sensor systems
Sleep
Smoothing methods
Stochastic processes
Wireless sensor networks
title Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20Approximation%20Based%20Tracking%20of%20Correlated%20Equilibria%20for%20Game-Theoretic%20Reconfigurable%20Sensor%20Network%20Deployment&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Krishnamurthy,%20V.&rft.date=2006-12&rft.spage=2051&rft.epage=2056&rft.pages=2051-2056&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.376889&rft_dat=%3Cieee_6IE%3E4177325%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177325&rfr_iscdi=true