Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment
Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching&...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2056 |
---|---|
container_issue | |
container_start_page | 2051 |
container_title | |
container_volume | |
creator | Krishnamurthy, V. Yin, G. Maskery, M. |
description | Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor |
doi_str_mv | 10.1109/CDC.2006.376889 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177325</ieee_id><sourcerecordid>4177325</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-324c519a04299d35ab0d6c84f4b0909031678d3c490ad126fbb0a30d87947b263</originalsourceid><addsrcrecordid>eNotj11LwzAYhQMqOHXXXniTP9D55mNJczm7OYWh4Ho_0vbtFtc1Nc3QgT_einIuDhweHjiE3DKYMAbmPptnEw6gJkKrNDVnZGx0yiSXEphmcE5GwAxLOGfqklz1_TsApKDUiHyvoy93to-upLOuC_7LHWx0vqUPtseK5sGWe9duqa9p5kPAxsZhXnwcXeOK4CytfaBLe8Ak36EP-Ct6w9K3tdsegy0apGts-wF6wfjpw57OsWv86YBtvCEXtW16HP_3NckfF3n2lKxel8_ZbJU4AzERXJZTZixIbkwlpraASpWprGUBZohgSqeVKKUBWzGu6qIAK6BKtZG64Epck7s_rUPETReGh-G0kUxrwafiB_fpXpM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</creator><creatorcontrib>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</creatorcontrib><description>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.376889</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Convergence ; Differential equations ; Fading ; Sensor arrays ; Sensor systems ; Sleep ; Smoothing methods ; Stochastic processes ; Wireless sensor networks</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2051-2056</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177325$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177325$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><creatorcontrib>Maskery, M.</creatorcontrib><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</description><subject>Approximation algorithms</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Fading</subject><subject>Sensor arrays</subject><subject>Sensor systems</subject><subject>Sleep</subject><subject>Smoothing methods</subject><subject>Stochastic processes</subject><subject>Wireless sensor networks</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhQMqOHXXXniTP9D55mNJczm7OYWh4Ho_0vbtFtc1Nc3QgT_einIuDhweHjiE3DKYMAbmPptnEw6gJkKrNDVnZGx0yiSXEphmcE5GwAxLOGfqklz1_TsApKDUiHyvoy93to-upLOuC_7LHWx0vqUPtseK5sGWe9duqa9p5kPAxsZhXnwcXeOK4CytfaBLe8Ak36EP-Ct6w9K3tdsegy0apGts-wF6wfjpw57OsWv86YBtvCEXtW16HP_3NckfF3n2lKxel8_ZbJU4AzERXJZTZixIbkwlpraASpWprGUBZohgSqeVKKUBWzGu6qIAK6BKtZG64Epck7s_rUPETReGh-G0kUxrwafiB_fpXpM</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Krishnamurthy, V.</creator><creator>Yin, G.</creator><creator>Maskery, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</title><author>Krishnamurthy, V. ; Yin, G. ; Maskery, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-324c519a04299d35ab0d6c84f4b0909031678d3c490ad126fbb0a30d87947b263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation algorithms</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Fading</topic><topic>Sensor arrays</topic><topic>Sensor systems</topic><topic>Sleep</topic><topic>Smoothing methods</topic><topic>Stochastic processes</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, V.</creatorcontrib><creatorcontrib>Yin, G.</creatorcontrib><creatorcontrib>Maskery, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnamurthy, V.</au><au>Yin, G.</au><au>Maskery, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>2051</spage><epage>2056</epage><pages>2051-2056</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>Deployment of wireless sensors to efficiently forward information through a large array is considered from a game-theoretic perspective. Sensors with limited awareness learn to make local decisions (sleep/wake) in order to forward data in a slowly varying environment through a "regret matching" algorithm. With appropriately small smoothing and perturbation, we are able to apply results from stochastic approximation to establish global convergence of this algorithm and for an adaptive variant. The adaptive version allows sensor network connections to be reconfigured as game conditions change. We illustrate this reconfigurability with respect to channel fading, changing network demands, and sensor failure. Instead of the Blackwell approachability method used in previous papers, we give an ordinary differential equation formulation with a Lyapunov function to prove convergence to a correlated equilibrium. Numerical studies show that the algorithms can satisfactorily track correlated equilibria in systems of several thousand sensors, resulting in near competitive optimality at each sensor</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.376889</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2051-2056 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_4177325 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Convergence Differential equations Fading Sensor arrays Sensor systems Sleep Smoothing methods Stochastic processes Wireless sensor networks |
title | Stochastic Approximation Based Tracking of Correlated Equilibria for Game-Theoretic Reconfigurable Sensor Network Deployment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20Approximation%20Based%20Tracking%20of%20Correlated%20Equilibria%20for%20Game-Theoretic%20Reconfigurable%20Sensor%20Network%20Deployment&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Krishnamurthy,%20V.&rft.date=2006-12&rft.spage=2051&rft.epage=2056&rft.pages=2051-2056&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.376889&rft_dat=%3Cieee_6IE%3E4177325%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177325&rfr_iscdi=true |