Solution of Systems of Linear Delay Differential Equations via Laplace Transformation

An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sun Yi, Ulsoy, A.G., Nelson, P.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2540
container_issue
container_start_page 2535
container_title
container_volume
creator Sun Yi
Ulsoy, A.G.
Nelson, P.W.
description An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations
doi_str_mv 10.1109/CDC.2006.377712
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177221</ieee_id><sourcerecordid>4177221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</originalsourceid><addsrcrecordid>eNotj81KAzEYRQMqWGvXLtzkBWbMl6TJzFJmahUGXLRdly9_EJmfOpkK8_ZadXUvHO6BS8gDsByAlU9VXeWcMZULrTXwK7IqdQGSS8lAA7smCwYlZJyDuiV3KX0wxgqm1IIcdkN7nuLQ0yHQ3Zwm36VLbWLvcaS1b3GmdQzBj76fIrZ083nGyyDRr4i0wVOL1tP9iH0Kw9j9sntyE7BNfvWfS3J42eyr16x5375Vz01mQagp42uOci2YFVYpI4BbEwxXKC1aJ0VpjJOyNMrZwLWUXjmnObqycKpQXnOxJI9_3ui9P57G2OE4HyVo_XNVfAOz9VEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</creator><creatorcontrib>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</creatorcontrib><description>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.377712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Delay effects ; Delay lines ; Delay systems ; Differential equations ; Force control ; Laplace equations ; Stability ; Sun ; USA Councils</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2535-2540</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun Yi</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</description><subject>Control systems</subject><subject>Delay effects</subject><subject>Delay lines</subject><subject>Delay systems</subject><subject>Differential equations</subject><subject>Force control</subject><subject>Laplace equations</subject><subject>Stability</subject><subject>Sun</subject><subject>USA Councils</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEYRQMqWGvXLtzkBWbMl6TJzFJmahUGXLRdly9_EJmfOpkK8_ZadXUvHO6BS8gDsByAlU9VXeWcMZULrTXwK7IqdQGSS8lAA7smCwYlZJyDuiV3KX0wxgqm1IIcdkN7nuLQ0yHQ3Zwm36VLbWLvcaS1b3GmdQzBj76fIrZ083nGyyDRr4i0wVOL1tP9iH0Kw9j9sntyE7BNfvWfS3J42eyr16x5375Vz01mQagp42uOci2YFVYpI4BbEwxXKC1aJ0VpjJOyNMrZwLWUXjmnObqycKpQXnOxJI9_3ui9P57G2OE4HyVo_XNVfAOz9VEw</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Sun Yi</creator><creator>Ulsoy, A.G.</creator><creator>Nelson, P.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><author>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Control systems</topic><topic>Delay effects</topic><topic>Delay lines</topic><topic>Delay systems</topic><topic>Differential equations</topic><topic>Force control</topic><topic>Laplace equations</topic><topic>Stability</topic><topic>Sun</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun Yi</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun Yi</au><au>Ulsoy, A.G.</au><au>Nelson, P.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>2535</spage><epage>2540</epage><pages>2535-2540</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.377712</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2535-2540
issn 0191-2216
language eng
recordid cdi_ieee_primary_4177221
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Delay effects
Delay lines
Delay systems
Differential equations
Force control
Laplace equations
Stability
Sun
USA Councils
title Solution of Systems of Linear Delay Differential Equations via Laplace Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solution%20of%20Systems%20of%20Linear%20Delay%20Differential%20Equations%20via%20Laplace%20Transformation&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Sun%20Yi&rft.date=2006-12&rft.spage=2535&rft.epage=2540&rft.pages=2535-2540&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.377712&rft_dat=%3Cieee_6IE%3E4177221%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177221&rfr_iscdi=true