Solution of Systems of Linear Delay Differential Equations via Laplace Transformation
An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in ter...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2540 |
---|---|
container_issue | |
container_start_page | 2535 |
container_title | |
container_volume | |
creator | Sun Yi Ulsoy, A.G. Nelson, P.W. |
description | An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations |
doi_str_mv | 10.1109/CDC.2006.377712 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4177221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4177221</ieee_id><sourcerecordid>4177221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</originalsourceid><addsrcrecordid>eNotj81KAzEYRQMqWGvXLtzkBWbMl6TJzFJmahUGXLRdly9_EJmfOpkK8_ZadXUvHO6BS8gDsByAlU9VXeWcMZULrTXwK7IqdQGSS8lAA7smCwYlZJyDuiV3KX0wxgqm1IIcdkN7nuLQ0yHQ3Zwm36VLbWLvcaS1b3GmdQzBj76fIrZ083nGyyDRr4i0wVOL1tP9iH0Kw9j9sntyE7BNfvWfS3J42eyr16x5375Vz01mQagp42uOci2YFVYpI4BbEwxXKC1aJ0VpjJOyNMrZwLWUXjmnObqycKpQXnOxJI9_3ui9P57G2OE4HyVo_XNVfAOz9VEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</creator><creatorcontrib>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</creatorcontrib><description>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781424401710</identifier><identifier>ISBN: 1424401712</identifier><identifier>DOI: 10.1109/CDC.2006.377712</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Delay effects ; Delay lines ; Delay systems ; Differential equations ; Force control ; Laplace equations ; Stability ; Sun ; USA Councils</subject><ispartof>Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2535-2540</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4177221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4177221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun Yi</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><title>Proceedings of the 45th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</description><subject>Control systems</subject><subject>Delay effects</subject><subject>Delay lines</subject><subject>Delay systems</subject><subject>Differential equations</subject><subject>Force control</subject><subject>Laplace equations</subject><subject>Stability</subject><subject>Sun</subject><subject>USA Councils</subject><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEYRQMqWGvXLtzkBWbMl6TJzFJmahUGXLRdly9_EJmfOpkK8_ZadXUvHO6BS8gDsByAlU9VXeWcMZULrTXwK7IqdQGSS8lAA7smCwYlZJyDuiV3KX0wxgqm1IIcdkN7nuLQ0yHQ3Zwm36VLbWLvcaS1b3GmdQzBj76fIrZ083nGyyDRr4i0wVOL1tP9iH0Kw9j9sntyE7BNfvWfS3J42eyr16x5375Vz01mQagp42uOci2YFVYpI4BbEwxXKC1aJ0VpjJOyNMrZwLWUXjmnObqycKpQXnOxJI9_3ui9P57G2OE4HyVo_XNVfAOz9VEw</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Sun Yi</creator><creator>Ulsoy, A.G.</creator><creator>Nelson, P.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200612</creationdate><title>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</title><author>Sun Yi ; Ulsoy, A.G. ; Nelson, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c136t-252a4530c3c66b312cbfb26a4cacd439bbd449b6dcf2744e6dd72ad98d686e723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Control systems</topic><topic>Delay effects</topic><topic>Delay lines</topic><topic>Delay systems</topic><topic>Differential equations</topic><topic>Force control</topic><topic>Laplace equations</topic><topic>Stability</topic><topic>Sun</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun Yi</creatorcontrib><creatorcontrib>Ulsoy, A.G.</creatorcontrib><creatorcontrib>Nelson, P.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun Yi</au><au>Ulsoy, A.G.</au><au>Nelson, P.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solution of Systems of Linear Delay Differential Equations via Laplace Transformation</atitle><btitle>Proceedings of the 45th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2006-12</date><risdate>2006</risdate><spage>2535</spage><epage>2540</epage><pages>2535-2540</pages><issn>0191-2216</issn><isbn>9781424401710</isbn><isbn>1424401712</isbn><abstract>An approach using the Lambert W function for the analytical solution, free and forced, to systems of delay differential equations with a single delay has been developed by Asl And Ulsoy (2003) and Yi and Ulso (2006). The solution is expressed in the form of an infinite series of modes written in terms of the matrix Lambert W function. In this paper, we utilize the analytical solution to present a solution in the Laplace domain, present validation examples, and emphasize the analogy of the solution method to systems of ordinary differential equations</abstract><pub>IEEE</pub><doi>10.1109/CDC.2006.377712</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 45th IEEE Conference on Decision and Control, 2006, p.2535-2540 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_4177221 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Delay effects Delay lines Delay systems Differential equations Force control Laplace equations Stability Sun USA Councils |
title | Solution of Systems of Linear Delay Differential Equations via Laplace Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solution%20of%20Systems%20of%20Linear%20Delay%20Differential%20Equations%20via%20Laplace%20Transformation&rft.btitle=Proceedings%20of%20the%2045th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Sun%20Yi&rft.date=2006-12&rft.spage=2535&rft.epage=2540&rft.pages=2535-2540&rft.issn=0191-2216&rft.isbn=9781424401710&rft.isbn_list=1424401712&rft_id=info:doi/10.1109/CDC.2006.377712&rft_dat=%3Cieee_6IE%3E4177221%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4177221&rfr_iscdi=true |