Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers
We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plat...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1221 |
---|---|
container_issue | |
container_start_page | 1217 |
container_title | |
container_volume | |
creator | Abatzoglou, T.J. |
description | We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model. |
doi_str_mv | 10.1109/ACSSC.2006.354949 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4176759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4176759</ieee_id><sourcerecordid>4176759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af9ecdca4922457bdfd6c46dac02d0ddcaf698808102684a74012e92df7f56bf3</originalsourceid><addsrcrecordid>eNpVT8tKAzEUjS-w1H6AuMkPTL15J8sy1Cq0KFZXLko6STQ605SZDLR_74huXJ0XHM5B6JrAlBAwt7NyvS6nFEBOmeCGmxM0MUoTTjkHpYU5RSMqlCwoA3b2L-P0HI0ICF1IZtglmnTdJwAQNUhDR-htZQ-x6Ru8jF--jh8pOTzvcmxsjmmHU8DPdvfuf8hTqo-71ERb41mzr2Puncer5PraZu9wmQbTH_C6sjn71rfdFboItu785A_H6PVu_lLeF8vHxUM5WxaRKJELG4yvXGW5oZQLtXXByYpLZyugDtyQBGm0Bk2ASs2t4kCoN9QFFYTcBjZGN7-90Xu_2bfD-Pa44cNHJQz7BoywWeU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abatzoglou, T.J.</creator><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><description>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424407842</identifier><identifier>ISBN: 1424407842</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424407859</identifier><identifier>EISBN: 1424407850</identifier><identifier>DOI: 10.1109/ACSSC.2006.354949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude estimation ; Amplitude modulation ; Chirp modulation ; Computer vision ; Frequency estimation ; Maximum likelihood estimation ; Mean square error methods ; Optical scattering ; Polynomials ; Radar scattering</subject><ispartof>2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.1217-1221</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4176759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4176759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><title>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</description><subject>Amplitude estimation</subject><subject>Amplitude modulation</subject><subject>Chirp modulation</subject><subject>Computer vision</subject><subject>Frequency estimation</subject><subject>Maximum likelihood estimation</subject><subject>Mean square error methods</subject><subject>Optical scattering</subject><subject>Polynomials</subject><subject>Radar scattering</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424407842</isbn><isbn>1424407842</isbn><isbn>9781424407859</isbn><isbn>1424407850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT8tKAzEUjS-w1H6AuMkPTL15J8sy1Cq0KFZXLko6STQ605SZDLR_74huXJ0XHM5B6JrAlBAwt7NyvS6nFEBOmeCGmxM0MUoTTjkHpYU5RSMqlCwoA3b2L-P0HI0ICF1IZtglmnTdJwAQNUhDR-htZQ-x6Ru8jF--jh8pOTzvcmxsjmmHU8DPdvfuf8hTqo-71ERb41mzr2Puncer5PraZu9wmQbTH_C6sjn71rfdFboItu785A_H6PVu_lLeF8vHxUM5WxaRKJELG4yvXGW5oZQLtXXByYpLZyugDtyQBGm0Bk2ASs2t4kCoN9QFFYTcBjZGN7-90Xu_2bfD-Pa44cNHJQz7BoywWeU</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Abatzoglou, T.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><author>Abatzoglou, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af9ecdca4922457bdfd6c46dac02d0ddcaf698808102684a74012e92df7f56bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude estimation</topic><topic>Amplitude modulation</topic><topic>Chirp modulation</topic><topic>Computer vision</topic><topic>Frequency estimation</topic><topic>Maximum likelihood estimation</topic><topic>Mean square error methods</topic><topic>Optical scattering</topic><topic>Polynomials</topic><topic>Radar scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abatzoglou, T.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</atitle><btitle>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2006-10</date><risdate>2006</risdate><spage>1217</spage><epage>1221</epage><pages>1217-1221</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424407842</isbn><isbn>1424407842</isbn><eisbn>9781424407859</eisbn><eisbn>1424407850</eisbn><abstract>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2006.354949</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.1217-1221 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_4176759 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Amplitude estimation Amplitude modulation Chirp modulation Computer vision Frequency estimation Maximum likelihood estimation Mean square error methods Optical scattering Polynomials Radar scattering |
title | Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maximum%20Likelihood%20Estimation%20of%20Range%20of%20Polynomial%20Amplitude%20Modulated%20Complex%20Scatterers&rft.btitle=2006%20Fortieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Abatzoglou,%20T.J.&rft.date=2006-10&rft.spage=1217&rft.epage=1221&rft.pages=1217-1221&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424407842&rft.isbn_list=1424407842&rft_id=info:doi/10.1109/ACSSC.2006.354949&rft_dat=%3Cieee_6IE%3E4176759%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407859&rft.eisbn_list=1424407850&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4176759&rfr_iscdi=true |