Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers

We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Abatzoglou, T.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1221
container_issue
container_start_page 1217
container_title
container_volume
creator Abatzoglou, T.J.
description We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.
doi_str_mv 10.1109/ACSSC.2006.354949
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4176759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4176759</ieee_id><sourcerecordid>4176759</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-af9ecdca4922457bdfd6c46dac02d0ddcaf698808102684a74012e92df7f56bf3</originalsourceid><addsrcrecordid>eNpVT8tKAzEUjS-w1H6AuMkPTL15J8sy1Cq0KFZXLko6STQ605SZDLR_74huXJ0XHM5B6JrAlBAwt7NyvS6nFEBOmeCGmxM0MUoTTjkHpYU5RSMqlCwoA3b2L-P0HI0ICF1IZtglmnTdJwAQNUhDR-htZQ-x6Ru8jF--jh8pOTzvcmxsjmmHU8DPdvfuf8hTqo-71ERb41mzr2Puncer5PraZu9wmQbTH_C6sjn71rfdFboItu785A_H6PVu_lLeF8vHxUM5WxaRKJELG4yvXGW5oZQLtXXByYpLZyugDtyQBGm0Bk2ASs2t4kCoN9QFFYTcBjZGN7-90Xu_2bfD-Pa44cNHJQz7BoywWeU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abatzoglou, T.J.</creator><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><description>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424407842</identifier><identifier>ISBN: 1424407842</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424407859</identifier><identifier>EISBN: 1424407850</identifier><identifier>DOI: 10.1109/ACSSC.2006.354949</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude estimation ; Amplitude modulation ; Chirp modulation ; Computer vision ; Frequency estimation ; Maximum likelihood estimation ; Mean square error methods ; Optical scattering ; Polynomials ; Radar scattering</subject><ispartof>2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.1217-1221</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4176759$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4176759$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><title>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</description><subject>Amplitude estimation</subject><subject>Amplitude modulation</subject><subject>Chirp modulation</subject><subject>Computer vision</subject><subject>Frequency estimation</subject><subject>Maximum likelihood estimation</subject><subject>Mean square error methods</subject><subject>Optical scattering</subject><subject>Polynomials</subject><subject>Radar scattering</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424407842</isbn><isbn>1424407842</isbn><isbn>9781424407859</isbn><isbn>1424407850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT8tKAzEUjS-w1H6AuMkPTL15J8sy1Cq0KFZXLko6STQ605SZDLR_74huXJ0XHM5B6JrAlBAwt7NyvS6nFEBOmeCGmxM0MUoTTjkHpYU5RSMqlCwoA3b2L-P0HI0ICF1IZtglmnTdJwAQNUhDR-htZQ-x6Ru8jF--jh8pOTzvcmxsjmmHU8DPdvfuf8hTqo-71ERb41mzr2Puncer5PraZu9wmQbTH_C6sjn71rfdFboItu785A_H6PVu_lLeF8vHxUM5WxaRKJELG4yvXGW5oZQLtXXByYpLZyugDtyQBGm0Bk2ASs2t4kCoN9QFFYTcBjZGN7-90Xu_2bfD-Pa44cNHJQz7BoywWeU</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Abatzoglou, T.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</title><author>Abatzoglou, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-af9ecdca4922457bdfd6c46dac02d0ddcaf698808102684a74012e92df7f56bf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude estimation</topic><topic>Amplitude modulation</topic><topic>Chirp modulation</topic><topic>Computer vision</topic><topic>Frequency estimation</topic><topic>Maximum likelihood estimation</topic><topic>Mean square error methods</topic><topic>Optical scattering</topic><topic>Polynomials</topic><topic>Radar scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Abatzoglou, T.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abatzoglou, T.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers</atitle><btitle>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2006-10</date><risdate>2006</risdate><spage>1217</spage><epage>1221</epage><pages>1217-1221</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424407842</isbn><isbn>1424407842</isbn><eisbn>9781424407859</eisbn><eisbn>1424407850</eisbn><abstract>We analyze the maximum likelihood estimator (MLE) of range from frequency samples of a radar return consisting of a superposition of complex scatterers whose amplitude have a polynomial amplitude dependence in frequency. Such scatterers arise from target components that contain edges, like flat plates, dihedral and trihedral reflectors, cones, cylinders and other basic geometric shapes. When the MLE of the linear prediction coefficients is used to estimate the scatterer's range, assuming constant amplitude, very closely spaced roots arise from the linear prediction polynomial. The mean square error (MSE) of the multiple root, corresponding to polynomial amplitude dependence, is computed in closed form in the presence of noise. A better approach is to constrain the linear prediction coefficients to account for the multiple roots while doing maximum likelihood estimation of these coefficients. Its mean square error performance is given by the corresponding Cramer-Rao bound (CRB), is computed for the repeated root sinusoids and is shown to be significantly more accurate than the MSE of the distinct(non-repeated) roots model.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2006.354949</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.1217-1221
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_4176759
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amplitude estimation
Amplitude modulation
Chirp modulation
Computer vision
Frequency estimation
Maximum likelihood estimation
Mean square error methods
Optical scattering
Polynomials
Radar scattering
title Maximum Likelihood Estimation of Range of Polynomial Amplitude Modulated Complex Scatterers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maximum%20Likelihood%20Estimation%20of%20Range%20of%20Polynomial%20Amplitude%20Modulated%20Complex%20Scatterers&rft.btitle=2006%20Fortieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Abatzoglou,%20T.J.&rft.date=2006-10&rft.spage=1217&rft.epage=1221&rft.pages=1217-1221&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424407842&rft.isbn_list=1424407842&rft_id=info:doi/10.1109/ACSSC.2006.354949&rft_dat=%3Cieee_6IE%3E4176759%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407859&rft.eisbn_list=1424407850&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4176759&rfr_iscdi=true