Enhanced Simultaneous Camera Calibration and Path Estimation

This paper addresses two issues related to the simultaneous calibration of a network of imaging sensors and the recovery of the trajectory of a single target moving among them. The non-overlapping fields of view for the cameras do not cover the entire scene, resulting in times for which no measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rudoy, M.B., Rohrs, C.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue
container_start_page 513
container_title
container_volume
creator Rudoy, M.B.
Rohrs, C.E.
description This paper addresses two issues related to the simultaneous calibration of a network of imaging sensors and the recovery of the trajectory of a single target moving among them. The non-overlapping fields of view for the cameras do not cover the entire scene, resulting in times for which no measurements are available. A Bayesian framework is imposed on the problem in order to compute the MAP (maximum a posteriori) estimate for both the trajectory of the target and the translation and rotation of each camera within the global scene. First, three model order reduction techniques that decrease the dimension of the search space and the number of terms in the objective function are presented, thereby reducing the computational requirements of the search algorithm used to solve the optimization problem. Next, the problem of finding a solution that is consistent with the set of observation times is addressed, so that the target's estimated state does not fall within the field of view of the sensor network at a time for which no measurement is available. Three techniques that treat the missing measurements as additional inequality or equality constraints within the MAP optimization framework are presented.
doi_str_mv 10.1109/ACSSC.2006.354801
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4176611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4176611</ieee_id><sourcerecordid>4176611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-794cd7d582e131f3b8bff358fcbef0a3a7bc3eb555da38f1dc71d22553cbd7c23</originalsourceid><addsrcrecordid>eNpVj01LxDAYhOMXWNb-APHSP9CaN2_SJOBlKbsqLChUz0s-2UjblbZ78N9b1Iunh5mBGYaQW6AVANX366Ztm4pRWlcouKJwRnItFXDGOZVK6HOSMSHrkiHFi38ZZ5ckAypUWaPGa5JP0welFOQiNcvIw2Y4mMEFX7SpP3WzGcLxNBWN6cNoFnTJjmZOx6Ewgy9ezXwoNtOc-h_vhlxF000h_-OKvG83b81TuXt5fG7WuzKBFHMpNXdeeqFYAISIVtkYUajobIjUoJHWYbBCCG9QRfBOgmdMCHTWS8dwRe5-e1MIYf85LvPj154vJ2oA_AaOkU46</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced Simultaneous Camera Calibration and Path Estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rudoy, M.B. ; Rohrs, C.E.</creator><creatorcontrib>Rudoy, M.B. ; Rohrs, C.E.</creatorcontrib><description>This paper addresses two issues related to the simultaneous calibration of a network of imaging sensors and the recovery of the trajectory of a single target moving among them. The non-overlapping fields of view for the cameras do not cover the entire scene, resulting in times for which no measurements are available. A Bayesian framework is imposed on the problem in order to compute the MAP (maximum a posteriori) estimate for both the trajectory of the target and the translation and rotation of each camera within the global scene. First, three model order reduction techniques that decrease the dimension of the search space and the number of terms in the objective function are presented, thereby reducing the computational requirements of the search algorithm used to solve the optimization problem. Next, the problem of finding a solution that is consistent with the set of observation times is addressed, so that the target's estimated state does not fall within the field of view of the sensor network at a time for which no measurement is available. Three techniques that treat the missing measurements as additional inequality or equality constraints within the MAP optimization framework are presented.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781424407842</identifier><identifier>ISBN: 1424407842</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781424407859</identifier><identifier>EISBN: 1424407850</identifier><identifier>DOI: 10.1109/ACSSC.2006.354801</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Calibration ; Constraint optimization ; Digital cameras ; Digital signal processing ; Layout ; Motion estimation ; State estimation ; Time measurement ; Trajectory</subject><ispartof>2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.513-520</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4176611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4176611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rudoy, M.B.</creatorcontrib><creatorcontrib>Rohrs, C.E.</creatorcontrib><title>Enhanced Simultaneous Camera Calibration and Path Estimation</title><title>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>This paper addresses two issues related to the simultaneous calibration of a network of imaging sensors and the recovery of the trajectory of a single target moving among them. The non-overlapping fields of view for the cameras do not cover the entire scene, resulting in times for which no measurements are available. A Bayesian framework is imposed on the problem in order to compute the MAP (maximum a posteriori) estimate for both the trajectory of the target and the translation and rotation of each camera within the global scene. First, three model order reduction techniques that decrease the dimension of the search space and the number of terms in the objective function are presented, thereby reducing the computational requirements of the search algorithm used to solve the optimization problem. Next, the problem of finding a solution that is consistent with the set of observation times is addressed, so that the target's estimated state does not fall within the field of view of the sensor network at a time for which no measurement is available. Three techniques that treat the missing measurements as additional inequality or equality constraints within the MAP optimization framework are presented.</description><subject>Bayesian methods</subject><subject>Calibration</subject><subject>Constraint optimization</subject><subject>Digital cameras</subject><subject>Digital signal processing</subject><subject>Layout</subject><subject>Motion estimation</subject><subject>State estimation</subject><subject>Time measurement</subject><subject>Trajectory</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781424407842</isbn><isbn>1424407842</isbn><isbn>9781424407859</isbn><isbn>1424407850</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01LxDAYhOMXWNb-APHSP9CaN2_SJOBlKbsqLChUz0s-2UjblbZ78N9b1Iunh5mBGYaQW6AVANX366Ztm4pRWlcouKJwRnItFXDGOZVK6HOSMSHrkiHFi38ZZ5ckAypUWaPGa5JP0welFOQiNcvIw2Y4mMEFX7SpP3WzGcLxNBWN6cNoFnTJjmZOx6Ewgy9ezXwoNtOc-h_vhlxF000h_-OKvG83b81TuXt5fG7WuzKBFHMpNXdeeqFYAISIVtkYUajobIjUoJHWYbBCCG9QRfBOgmdMCHTWS8dwRe5-e1MIYf85LvPj154vJ2oA_AaOkU46</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Rudoy, M.B.</creator><creator>Rohrs, C.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Enhanced Simultaneous Camera Calibration and Path Estimation</title><author>Rudoy, M.B. ; Rohrs, C.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-794cd7d582e131f3b8bff358fcbef0a3a7bc3eb555da38f1dc71d22553cbd7c23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bayesian methods</topic><topic>Calibration</topic><topic>Constraint optimization</topic><topic>Digital cameras</topic><topic>Digital signal processing</topic><topic>Layout</topic><topic>Motion estimation</topic><topic>State estimation</topic><topic>Time measurement</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Rudoy, M.B.</creatorcontrib><creatorcontrib>Rohrs, C.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rudoy, M.B.</au><au>Rohrs, C.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced Simultaneous Camera Calibration and Path Estimation</atitle><btitle>2006 Fortieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>2006-10</date><risdate>2006</risdate><spage>513</spage><epage>520</epage><pages>513-520</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781424407842</isbn><isbn>1424407842</isbn><eisbn>9781424407859</eisbn><eisbn>1424407850</eisbn><abstract>This paper addresses two issues related to the simultaneous calibration of a network of imaging sensors and the recovery of the trajectory of a single target moving among them. The non-overlapping fields of view for the cameras do not cover the entire scene, resulting in times for which no measurements are available. A Bayesian framework is imposed on the problem in order to compute the MAP (maximum a posteriori) estimate for both the trajectory of the target and the translation and rotation of each camera within the global scene. First, three model order reduction techniques that decrease the dimension of the search space and the number of terms in the objective function are presented, thereby reducing the computational requirements of the search algorithm used to solve the optimization problem. Next, the problem of finding a solution that is consistent with the set of observation times is addressed, so that the target's estimated state does not fall within the field of view of the sensor network at a time for which no measurement is available. Three techniques that treat the missing measurements as additional inequality or equality constraints within the MAP optimization framework are presented.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2006.354801</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, p.513-520
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_4176611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Calibration
Constraint optimization
Digital cameras
Digital signal processing
Layout
Motion estimation
State estimation
Time measurement
Trajectory
title Enhanced Simultaneous Camera Calibration and Path Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20Simultaneous%20Camera%20Calibration%20and%20Path%20Estimation&rft.btitle=2006%20Fortieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Rudoy,%20M.B.&rft.date=2006-10&rft.spage=513&rft.epage=520&rft.pages=513-520&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781424407842&rft.isbn_list=1424407842&rft_id=info:doi/10.1109/ACSSC.2006.354801&rft_dat=%3Cieee_6IE%3E4176611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424407859&rft.eisbn_list=1424407850&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4176611&rfr_iscdi=true