An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA

This paper proposes an improved MUSIC algorithm with high-speed parallel optimization for FPGA. Although MUSIC algorithm is a high-performance, classic DOA method, it needs estimation and eigenstructure decomposition of covariance matrix, which is time-consuming with high computation cost and not su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhou Zou, Wang Hongyuan, Yu Guowen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Zhou Zou
Wang Hongyuan
Yu Guowen
description This paper proposes an improved MUSIC algorithm with high-speed parallel optimization for FPGA. Although MUSIC algorithm is a high-performance, classic DOA method, it needs estimation and eigenstructure decomposition of covariance matrix, which is time-consuming with high computation cost and not suitable for FPGA implementations. In this paper, the authors present an optimization algorithm without the eigenstructure decomposition of the covariance matrix. This algorithm offers far lower computation cost compared to MUSIC at the expense of little performance decrease. With parallel preprocessing focusing on correlation matrices estimation and spectral peak search, an FPGA implementation is introduced, and proved to be efficient through theoretical analysis, simulation and hardware implementation.
doi_str_mv 10.1109/ISAPE.2006.353475
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4168136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4168136</ieee_id><sourcerecordid>4168136</sourcerecordid><originalsourceid>FETCH-ieee_primary_41681363</originalsourceid><addsrcrecordid>eNp9iV0LgjAYRhcR9OUPiG72B7LNzamXIn14EQlWtzHorRabypSifn0Gddtz83DOQWhCiUspieZpHmcL1yNEuMxnPPA7yImCkHKPc0IF87to-AOP9ZFT1zfSjkVM0HCADnGBU1PZ8g4nvNnnaYJjfSmtaq7mEzQYKJq2PVqD1-pyndUVtJxJK7UGjbdVo4x6yUaVBT6XFi-zVTxGvbPUNTjfH6HpcrFL1jMFAMfKKiPt88ipCCkT7H99A2_VQn0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhou Zou ; Wang Hongyuan ; Yu Guowen</creator><creatorcontrib>Zhou Zou ; Wang Hongyuan ; Yu Guowen</creatorcontrib><description>This paper proposes an improved MUSIC algorithm with high-speed parallel optimization for FPGA. Although MUSIC algorithm is a high-performance, classic DOA method, it needs estimation and eigenstructure decomposition of covariance matrix, which is time-consuming with high computation cost and not suitable for FPGA implementations. In this paper, the authors present an optimization algorithm without the eigenstructure decomposition of the covariance matrix. This algorithm offers far lower computation cost compared to MUSIC at the expense of little performance decrease. With parallel preprocessing focusing on correlation matrices estimation and spectral peak search, an FPGA implementation is introduced, and proved to be efficient through theoretical analysis, simulation and hardware implementation.</description><identifier>ISBN: 1424401623</identifier><identifier>ISBN: 9781424401628</identifier><identifier>EISBN: 9781424401635</identifier><identifier>EISBN: 1424401631</identifier><identifier>DOI: 10.1109/ISAPE.2006.353475</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive white noise ; Algorithm design and analysis ; Computational efficiency ; Covariance matrix ; Direction of arrival estimation ; DOA Estimation ; Field programmable gate arrays ; FPGA Implementation ; Gaussian noise ; Hardware ; High-Speed Parallel Optimization ; Matrix decomposition ; Multiple signal classification ; MUSIC</subject><ispartof>2006 7th International Symposium on Antennas, Propagation &amp; EM Theory, 2006, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4168136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4168136$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou Zou</creatorcontrib><creatorcontrib>Wang Hongyuan</creatorcontrib><creatorcontrib>Yu Guowen</creatorcontrib><title>An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA</title><title>2006 7th International Symposium on Antennas, Propagation &amp; EM Theory</title><addtitle>ISAPE</addtitle><description>This paper proposes an improved MUSIC algorithm with high-speed parallel optimization for FPGA. Although MUSIC algorithm is a high-performance, classic DOA method, it needs estimation and eigenstructure decomposition of covariance matrix, which is time-consuming with high computation cost and not suitable for FPGA implementations. In this paper, the authors present an optimization algorithm without the eigenstructure decomposition of the covariance matrix. This algorithm offers far lower computation cost compared to MUSIC at the expense of little performance decrease. With parallel preprocessing focusing on correlation matrices estimation and spectral peak search, an FPGA implementation is introduced, and proved to be efficient through theoretical analysis, simulation and hardware implementation.</description><subject>Additive white noise</subject><subject>Algorithm design and analysis</subject><subject>Computational efficiency</subject><subject>Covariance matrix</subject><subject>Direction of arrival estimation</subject><subject>DOA Estimation</subject><subject>Field programmable gate arrays</subject><subject>FPGA Implementation</subject><subject>Gaussian noise</subject><subject>Hardware</subject><subject>High-Speed Parallel Optimization</subject><subject>Matrix decomposition</subject><subject>Multiple signal classification</subject><subject>MUSIC</subject><isbn>1424401623</isbn><isbn>9781424401628</isbn><isbn>9781424401635</isbn><isbn>1424401631</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9iV0LgjAYRhcR9OUPiG72B7LNzamXIn14EQlWtzHorRabypSifn0Gddtz83DOQWhCiUspieZpHmcL1yNEuMxnPPA7yImCkHKPc0IF87to-AOP9ZFT1zfSjkVM0HCADnGBU1PZ8g4nvNnnaYJjfSmtaq7mEzQYKJq2PVqD1-pyndUVtJxJK7UGjbdVo4x6yUaVBT6XFi-zVTxGvbPUNTjfH6HpcrFL1jMFAMfKKiPt88ipCCkT7H99A2_VQn0</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Zhou Zou</creator><creator>Wang Hongyuan</creator><creator>Yu Guowen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA</title><author>Zhou Zou ; Wang Hongyuan ; Yu Guowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_41681363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Additive white noise</topic><topic>Algorithm design and analysis</topic><topic>Computational efficiency</topic><topic>Covariance matrix</topic><topic>Direction of arrival estimation</topic><topic>DOA Estimation</topic><topic>Field programmable gate arrays</topic><topic>FPGA Implementation</topic><topic>Gaussian noise</topic><topic>Hardware</topic><topic>High-Speed Parallel Optimization</topic><topic>Matrix decomposition</topic><topic>Multiple signal classification</topic><topic>MUSIC</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou Zou</creatorcontrib><creatorcontrib>Wang Hongyuan</creatorcontrib><creatorcontrib>Yu Guowen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou Zou</au><au>Wang Hongyuan</au><au>Yu Guowen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA</atitle><btitle>2006 7th International Symposium on Antennas, Propagation &amp; EM Theory</btitle><stitle>ISAPE</stitle><date>2006-10</date><risdate>2006</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1424401623</isbn><isbn>9781424401628</isbn><eisbn>9781424401635</eisbn><eisbn>1424401631</eisbn><abstract>This paper proposes an improved MUSIC algorithm with high-speed parallel optimization for FPGA. Although MUSIC algorithm is a high-performance, classic DOA method, it needs estimation and eigenstructure decomposition of covariance matrix, which is time-consuming with high computation cost and not suitable for FPGA implementations. In this paper, the authors present an optimization algorithm without the eigenstructure decomposition of the covariance matrix. This algorithm offers far lower computation cost compared to MUSIC at the expense of little performance decrease. With parallel preprocessing focusing on correlation matrices estimation and spectral peak search, an FPGA implementation is introduced, and proved to be efficient through theoretical analysis, simulation and hardware implementation.</abstract><pub>IEEE</pub><doi>10.1109/ISAPE.2006.353475</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424401623
ispartof 2006 7th International Symposium on Antennas, Propagation & EM Theory, 2006, p.1-4
issn
language eng
recordid cdi_ieee_primary_4168136
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Additive white noise
Algorithm design and analysis
Computational efficiency
Covariance matrix
Direction of arrival estimation
DOA Estimation
Field programmable gate arrays
FPGA Implementation
Gaussian noise
Hardware
High-Speed Parallel Optimization
Matrix decomposition
Multiple signal classification
MUSIC
title An Improved MUSIC Algorithm Implemented with High-speed Parallel Optimization for FPGA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20MUSIC%20Algorithm%20Implemented%20with%20High-speed%20Parallel%20Optimization%20for%20FPGA&rft.btitle=2006%207th%20International%20Symposium%20on%20Antennas,%20Propagation%20&%20EM%20Theory&rft.au=Zhou%20Zou&rft.date=2006-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1424401623&rft.isbn_list=9781424401628&rft_id=info:doi/10.1109/ISAPE.2006.353475&rft_dat=%3Cieee_6IE%3E4168136%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424401635&rft.eisbn_list=1424401631&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4168136&rfr_iscdi=true