Improving current microbial pathway models by statistical modeling of phenotype array experiments

Hundreds of bacterial genomes have been sequenced, but only a fraction of the genes have known biochemical function. Advances in cellular phenotyping promise to narrow the gap and improve current annotations. Phenotype MicroArrays (PMs) simultaneously measure the response of an organism against thou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fodor, I.K., Holtz-Morris, A.E., McCutchen-Maloney, S.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 37
container_title
container_volume
creator Fodor, I.K.
Holtz-Morris, A.E.
McCutchen-Maloney, S.L.
description Hundreds of bacterial genomes have been sequenced, but only a fraction of the genes have known biochemical function. Advances in cellular phenotyping promise to narrow the gap and improve current annotations. Phenotype MicroArrays (PMs) simultaneously measure the response of an organism against thousands of conditions, and thus provide a high-throughput means to characterize microbial phenotypes and metabolism. The PM technology is completely automated, but current analysis methods involve time consuming visual inspection of the data, and thus present a bottleneck. We propose rigorous statistical methods to automatically assess the results of PM experiments, and to incorporate the functional information gained from PMs with existing knowledge from complementary genomic and proteomic platforms. The impact will be an improved data mining of high-throughput phenotype experiments, as well as an unprecedented ability to characterize microbes and improve current microbial pathway models.
doi_str_mv 10.1109/GENSIPS.2006.353144
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4161765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4161765</ieee_id><sourcerecordid>4161765</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c6e6ba1990bb21c8c968f6cd91aaeefdbf5c9eb05538976e801fc0aedc2881253</originalsourceid><addsrcrecordid>eNo1jctOwzAURI0AiVL6Bd34BxLujR-xl6gqpVIFSIV15Tg31KhpIic88veE12o0MzozjM0RUkSw16vl_Xb9uE0zAJ0KJVDKEzazuUGZSQnCKDxll_9G5mdskqGCRADgBZt13SsACDTGopwwt67b2LyH4wv3bzHSsed18LEpgjvw1vX7Dzfwuinp0PFi4F3v-tD1wY_tT_oNNhVv93Rs-qEl7mIcCfpsKYZ6nOuu2HnlDh3N_nTKnm-XT4u7ZPOwWi9uNknAXPWJ16QLh9ZCUWTojbfaVNqXFp0jqsqiUt5SAUoJY3NNBrDy4Kj0mTGYKTFl89_dQES7dnx3cdhJ1JhrJb4ATy9bhg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving current microbial pathway models by statistical modeling of phenotype array experiments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fodor, I.K. ; Holtz-Morris, A.E. ; McCutchen-Maloney, S.L.</creator><creatorcontrib>Fodor, I.K. ; Holtz-Morris, A.E. ; McCutchen-Maloney, S.L.</creatorcontrib><description>Hundreds of bacterial genomes have been sequenced, but only a fraction of the genes have known biochemical function. Advances in cellular phenotyping promise to narrow the gap and improve current annotations. Phenotype MicroArrays (PMs) simultaneously measure the response of an organism against thousands of conditions, and thus provide a high-throughput means to characterize microbial phenotypes and metabolism. The PM technology is completely automated, but current analysis methods involve time consuming visual inspection of the data, and thus present a bottleneck. We propose rigorous statistical methods to automatically assess the results of PM experiments, and to incorporate the functional information gained from PMs with existing knowledge from complementary genomic and proteomic platforms. The impact will be an improved data mining of high-throughput phenotype experiments, as well as an unprecedented ability to characterize microbes and improve current microbial pathway models.</description><identifier>ISSN: 2150-3001</identifier><identifier>ISBN: 1424403847</identifier><identifier>ISBN: 9781424403844</identifier><identifier>EISBN: 9781424403851</identifier><identifier>EISBN: 1424403855</identifier><identifier>DOI: 10.1109/GENSIPS.2006.353144</identifier><language>eng</language><subject>Biochemistry ; Bioinformatics ; Calcium ; Chemicals ; Genomics ; Inspection ; Microorganisms ; Organisms ; Plasma temperature ; Testing</subject><ispartof>2006 IEEE International Workshop on Genomic Signal Processing and Statistics, 2006, p.37-38</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4161765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4161765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fodor, I.K.</creatorcontrib><creatorcontrib>Holtz-Morris, A.E.</creatorcontrib><creatorcontrib>McCutchen-Maloney, S.L.</creatorcontrib><title>Improving current microbial pathway models by statistical modeling of phenotype array experiments</title><title>2006 IEEE International Workshop on Genomic Signal Processing and Statistics</title><addtitle>GENSIPS</addtitle><description>Hundreds of bacterial genomes have been sequenced, but only a fraction of the genes have known biochemical function. Advances in cellular phenotyping promise to narrow the gap and improve current annotations. Phenotype MicroArrays (PMs) simultaneously measure the response of an organism against thousands of conditions, and thus provide a high-throughput means to characterize microbial phenotypes and metabolism. The PM technology is completely automated, but current analysis methods involve time consuming visual inspection of the data, and thus present a bottleneck. We propose rigorous statistical methods to automatically assess the results of PM experiments, and to incorporate the functional information gained from PMs with existing knowledge from complementary genomic and proteomic platforms. The impact will be an improved data mining of high-throughput phenotype experiments, as well as an unprecedented ability to characterize microbes and improve current microbial pathway models.</description><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Calcium</subject><subject>Chemicals</subject><subject>Genomics</subject><subject>Inspection</subject><subject>Microorganisms</subject><subject>Organisms</subject><subject>Plasma temperature</subject><subject>Testing</subject><issn>2150-3001</issn><isbn>1424403847</isbn><isbn>9781424403844</isbn><isbn>9781424403851</isbn><isbn>1424403855</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jctOwzAURI0AiVL6Bd34BxLujR-xl6gqpVIFSIV15Tg31KhpIic88veE12o0MzozjM0RUkSw16vl_Xb9uE0zAJ0KJVDKEzazuUGZSQnCKDxll_9G5mdskqGCRADgBZt13SsACDTGopwwt67b2LyH4wv3bzHSsed18LEpgjvw1vX7Dzfwuinp0PFi4F3v-tD1wY_tT_oNNhVv93Rs-qEl7mIcCfpsKYZ6nOuu2HnlDh3N_nTKnm-XT4u7ZPOwWi9uNknAXPWJ16QLh9ZCUWTojbfaVNqXFp0jqsqiUt5SAUoJY3NNBrDy4Kj0mTGYKTFl89_dQES7dnx3cdhJ1JhrJb4ATy9bhg</recordid><startdate>200605</startdate><enddate>200605</enddate><creator>Fodor, I.K.</creator><creator>Holtz-Morris, A.E.</creator><creator>McCutchen-Maloney, S.L.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200605</creationdate><title>Improving current microbial pathway models by statistical modeling of phenotype array experiments</title><author>Fodor, I.K. ; Holtz-Morris, A.E. ; McCutchen-Maloney, S.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c6e6ba1990bb21c8c968f6cd91aaeefdbf5c9eb05538976e801fc0aedc2881253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Calcium</topic><topic>Chemicals</topic><topic>Genomics</topic><topic>Inspection</topic><topic>Microorganisms</topic><topic>Organisms</topic><topic>Plasma temperature</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fodor, I.K.</creatorcontrib><creatorcontrib>Holtz-Morris, A.E.</creatorcontrib><creatorcontrib>McCutchen-Maloney, S.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fodor, I.K.</au><au>Holtz-Morris, A.E.</au><au>McCutchen-Maloney, S.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving current microbial pathway models by statistical modeling of phenotype array experiments</atitle><btitle>2006 IEEE International Workshop on Genomic Signal Processing and Statistics</btitle><stitle>GENSIPS</stitle><date>2006-05</date><risdate>2006</risdate><spage>37</spage><epage>38</epage><pages>37-38</pages><issn>2150-3001</issn><isbn>1424403847</isbn><isbn>9781424403844</isbn><eisbn>9781424403851</eisbn><eisbn>1424403855</eisbn><abstract>Hundreds of bacterial genomes have been sequenced, but only a fraction of the genes have known biochemical function. Advances in cellular phenotyping promise to narrow the gap and improve current annotations. Phenotype MicroArrays (PMs) simultaneously measure the response of an organism against thousands of conditions, and thus provide a high-throughput means to characterize microbial phenotypes and metabolism. The PM technology is completely automated, but current analysis methods involve time consuming visual inspection of the data, and thus present a bottleneck. We propose rigorous statistical methods to automatically assess the results of PM experiments, and to incorporate the functional information gained from PMs with existing knowledge from complementary genomic and proteomic platforms. The impact will be an improved data mining of high-throughput phenotype experiments, as well as an unprecedented ability to characterize microbes and improve current microbial pathway models.</abstract><doi>10.1109/GENSIPS.2006.353144</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2150-3001
ispartof 2006 IEEE International Workshop on Genomic Signal Processing and Statistics, 2006, p.37-38
issn 2150-3001
language eng
recordid cdi_ieee_primary_4161765
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biochemistry
Bioinformatics
Calcium
Chemicals
Genomics
Inspection
Microorganisms
Organisms
Plasma temperature
Testing
title Improving current microbial pathway models by statistical modeling of phenotype array experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20current%20microbial%20pathway%20models%20by%20statistical%20modeling%20of%20phenotype%20array%20experiments&rft.btitle=2006%20IEEE%20International%20Workshop%20on%20Genomic%20Signal%20Processing%20and%20Statistics&rft.au=Fodor,%20I.K.&rft.date=2006-05&rft.spage=37&rft.epage=38&rft.pages=37-38&rft.issn=2150-3001&rft.isbn=1424403847&rft.isbn_list=9781424403844&rft_id=info:doi/10.1109/GENSIPS.2006.353144&rft_dat=%3Cieee_6IE%3E4161765%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424403851&rft.eisbn_list=1424403855&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4161765&rfr_iscdi=true