A Data-Driven Statistical Approach to Analyzing Process Variation in 65nm SOI Technology

This paper presents a simple yet effective method to analyze process variations using statistics on manufacturing in-line data without assuming any explicit underlying model for process variations. Our method is based on a variant of principal component analysis and is able to reveal systematic vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choongyeun Cho, Daeik Kim, Jonghae Kim, Plouchart, J.-O., Daihyun Lim, Sangyeun Cho, Trzcinski, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a simple yet effective method to analyze process variations using statistics on manufacturing in-line data without assuming any explicit underlying model for process variations. Our method is based on a variant of principal component analysis and is able to reveal systematic variation patterns existing on a die-to-die and wafer-to-wafer level individually. The separation of die variation from wafer variation can enhance the understanding of a nature of the process uncertainty. Our case study based on the proposed decomposition method shows that the dominating die-to-die variation and wafer-to-wafer variation represent 31% and 25% of the total variance of a large set of in-line parameters in 65nm SOI CMOS technology
ISSN:1948-3287
1948-3295
DOI:10.1109/ISQED.2007.8