Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators

Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2007-04, Vol.16 (2), p.310-318
Hauptverfasser: DeMartini, B.E., Rhoads, J.F., Turner, K.L., Shaw, S.W., Moehlis, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 2
container_start_page 310
container_title Journal of microelectromechanical systems
container_volume 16
creator DeMartini, B.E.
Rhoads, J.F.
Turner, K.L.
Shaw, S.W.
Moehlis, J.
description Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally
doi_str_mv 10.1109/JMEMS.2007.892910
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4147582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4147582</ieee_id><sourcerecordid>903621039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoeH0AcVMEL5uO5-TSJEsZZrwwo4K6LmmaSqTTatIBfXszVhRc6CoJ-c5_TvIlyT7CCBHU2fV8Mr8fEQAxkooohLVkCxXDDJDL9bgHLjKBXGwm2yE8AyBjMt9KpjPXWu1T3VbpTdc2w-lh2br2Ke3q9E57vbC9d0Y3zXs6eTOut1W66pbeBuOaRvedD7vJRq2bYPe-1p3kcTp5GF9ms9uLq_H5LDMcRZ9JoYgEZXNaUouGMVNipaFiEkRtgcWn8LpEowUBVkrgspK8orxSpRCccLqTnAy5L757XdrQFwsXjI1TtLZbhkIBzQkCVZE8_pOkjDFCBIng6Z8g5gIpSJHz_1EgRAGTfNX-8Bf63C19G_-mUEgIpYrlEcIBMr4Lwdu6ePFuof17TCpWWotPrcVKazFojTVHX8E6RCe1161x4adQ5lJQpJE7GDhnrf2-ZsgEl4R-ALsQp4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912233946</pqid></control><display><type>article</type><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><source>IEEE Xplore</source><creator>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</creator><creatorcontrib>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</creatorcontrib><description>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2007.892910</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Direct current ; Electric potential ; Electrostatic ; Exact sciences and technology ; Excitation ; Filtering ; Frequency ; Geometry ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; Micromechanical devices ; Micromechanical devices and systems ; noninterdigitated combrives ; nonlinear ; Nonlinearity ; Oscillators ; parametric resonance ; Physics ; Resonance ; Softening ; Tuning ; Voltage</subject><ispartof>Journal of microelectromechanical systems, 2007-04, Vol.16 (2), p.310-318</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</citedby><cites>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4147582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4147582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18687313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DeMartini, B.E.</creatorcontrib><creatorcontrib>Rhoads, J.F.</creatorcontrib><creatorcontrib>Turner, K.L.</creatorcontrib><creatorcontrib>Shaw, S.W.</creatorcontrib><creatorcontrib>Moehlis, J.</creatorcontrib><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</description><subject>Actuators</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>Electrostatic</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Geometry</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>noninterdigitated combrives</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>parametric resonance</subject><subject>Physics</subject><subject>Resonance</subject><subject>Softening</subject><subject>Tuning</subject><subject>Voltage</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctKxDAUhosoeH0AcVMEL5uO5-TSJEsZZrwwo4K6LmmaSqTTatIBfXszVhRc6CoJ-c5_TvIlyT7CCBHU2fV8Mr8fEQAxkooohLVkCxXDDJDL9bgHLjKBXGwm2yE8AyBjMt9KpjPXWu1T3VbpTdc2w-lh2br2Ke3q9E57vbC9d0Y3zXs6eTOut1W66pbeBuOaRvedD7vJRq2bYPe-1p3kcTp5GF9ms9uLq_H5LDMcRZ9JoYgEZXNaUouGMVNipaFiEkRtgcWn8LpEowUBVkrgspK8orxSpRCccLqTnAy5L757XdrQFwsXjI1TtLZbhkIBzQkCVZE8_pOkjDFCBIng6Z8g5gIpSJHz_1EgRAGTfNX-8Bf63C19G_-mUEgIpYrlEcIBMr4Lwdu6ePFuof17TCpWWotPrcVKazFojTVHX8E6RCe1161x4adQ5lJQpJE7GDhnrf2-ZsgEl4R-ALsQp4I</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>DeMartini, B.E.</creator><creator>Rhoads, J.F.</creator><creator>Turner, K.L.</creator><creator>Shaw, S.W.</creator><creator>Moehlis, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070401</creationdate><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><author>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actuators</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>Electrostatic</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Geometry</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>noninterdigitated combrives</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>parametric resonance</topic><topic>Physics</topic><topic>Resonance</topic><topic>Softening</topic><topic>Tuning</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeMartini, B.E.</creatorcontrib><creatorcontrib>Rhoads, J.F.</creatorcontrib><creatorcontrib>Turner, K.L.</creatorcontrib><creatorcontrib>Shaw, S.W.</creatorcontrib><creatorcontrib>Moehlis, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DeMartini, B.E.</au><au>Rhoads, J.F.</au><au>Turner, K.L.</au><au>Shaw, S.W.</au><au>Moehlis, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>16</volume><issue>2</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2007.892910</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2007-04, Vol.16 (2), p.310-318
issn 1057-7157
1941-0158
language eng
recordid cdi_ieee_primary_4147582
source IEEE Xplore
subjects Actuators
Direct current
Electric potential
Electrostatic
Exact sciences and technology
Excitation
Filtering
Frequency
Geometry
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mechanical instruments, equipment and techniques
Micromechanical devices
Micromechanical devices and systems
noninterdigitated combrives
nonlinear
Nonlinearity
Oscillators
parametric resonance
Physics
Resonance
Softening
Tuning
Voltage
title Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Tuning%20of%20Parametrically%20Excited%20MEMS%20Oscillators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=DeMartini,%20B.E.&rft.date=2007-04-01&rft.volume=16&rft.issue=2&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2007.892910&rft_dat=%3Cproquest_RIE%3E903621039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912233946&rft_id=info:pmid/&rft_ieee_id=4147582&rfr_iscdi=true