Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators
Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuni...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2007-04, Vol.16 (2), p.310-318 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 310 |
container_title | Journal of microelectromechanical systems |
container_volume | 16 |
creator | DeMartini, B.E. Rhoads, J.F. Turner, K.L. Shaw, S.W. Moehlis, J. |
description | Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally |
doi_str_mv | 10.1109/JMEMS.2007.892910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4147582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4147582</ieee_id><sourcerecordid>903621039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</originalsourceid><addsrcrecordid>eNqFkctKxDAUhosoeH0AcVMEL5uO5-TSJEsZZrwwo4K6LmmaSqTTatIBfXszVhRc6CoJ-c5_TvIlyT7CCBHU2fV8Mr8fEQAxkooohLVkCxXDDJDL9bgHLjKBXGwm2yE8AyBjMt9KpjPXWu1T3VbpTdc2w-lh2br2Ke3q9E57vbC9d0Y3zXs6eTOut1W66pbeBuOaRvedD7vJRq2bYPe-1p3kcTp5GF9ms9uLq_H5LDMcRZ9JoYgEZXNaUouGMVNipaFiEkRtgcWn8LpEowUBVkrgspK8orxSpRCccLqTnAy5L757XdrQFwsXjI1TtLZbhkIBzQkCVZE8_pOkjDFCBIng6Z8g5gIpSJHz_1EgRAGTfNX-8Bf63C19G_-mUEgIpYrlEcIBMr4Lwdu6ePFuof17TCpWWotPrcVKazFojTVHX8E6RCe1161x4adQ5lJQpJE7GDhnrf2-ZsgEl4R-ALsQp4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912233946</pqid></control><display><type>article</type><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><source>IEEE Xplore</source><creator>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</creator><creatorcontrib>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</creatorcontrib><description>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2007.892910</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Actuators ; Direct current ; Electric potential ; Electrostatic ; Exact sciences and technology ; Excitation ; Filtering ; Frequency ; Geometry ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Mechanical instruments, equipment and techniques ; Micromechanical devices ; Micromechanical devices and systems ; noninterdigitated combrives ; nonlinear ; Nonlinearity ; Oscillators ; parametric resonance ; Physics ; Resonance ; Softening ; Tuning ; Voltage</subject><ispartof>Journal of microelectromechanical systems, 2007-04, Vol.16 (2), p.310-318</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</citedby><cites>FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4147582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4147582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18687313$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DeMartini, B.E.</creatorcontrib><creatorcontrib>Rhoads, J.F.</creatorcontrib><creatorcontrib>Turner, K.L.</creatorcontrib><creatorcontrib>Shaw, S.W.</creatorcontrib><creatorcontrib>Moehlis, J.</creatorcontrib><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</description><subject>Actuators</subject><subject>Direct current</subject><subject>Electric potential</subject><subject>Electrostatic</subject><subject>Exact sciences and technology</subject><subject>Excitation</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Geometry</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>noninterdigitated combrives</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>parametric resonance</subject><subject>Physics</subject><subject>Resonance</subject><subject>Softening</subject><subject>Tuning</subject><subject>Voltage</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctKxDAUhosoeH0AcVMEL5uO5-TSJEsZZrwwo4K6LmmaSqTTatIBfXszVhRc6CoJ-c5_TvIlyT7CCBHU2fV8Mr8fEQAxkooohLVkCxXDDJDL9bgHLjKBXGwm2yE8AyBjMt9KpjPXWu1T3VbpTdc2w-lh2br2Ke3q9E57vbC9d0Y3zXs6eTOut1W66pbeBuOaRvedD7vJRq2bYPe-1p3kcTp5GF9ms9uLq_H5LDMcRZ9JoYgEZXNaUouGMVNipaFiEkRtgcWn8LpEowUBVkrgspK8orxSpRCccLqTnAy5L757XdrQFwsXjI1TtLZbhkIBzQkCVZE8_pOkjDFCBIng6Z8g5gIpSJHz_1EgRAGTfNX-8Bf63C19G_-mUEgIpYrlEcIBMr4Lwdu6ePFuof17TCpWWotPrcVKazFojTVHX8E6RCe1161x4adQ5lJQpJE7GDhnrf2-ZsgEl4R-ALsQp4I</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>DeMartini, B.E.</creator><creator>Rhoads, J.F.</creator><creator>Turner, K.L.</creator><creator>Shaw, S.W.</creator><creator>Moehlis, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070401</creationdate><title>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</title><author>DeMartini, B.E. ; Rhoads, J.F. ; Turner, K.L. ; Shaw, S.W. ; Moehlis, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8792809e63b3e1c44cb1da0d4807fe041105fb1ca7204b8058d85d35d9b775253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actuators</topic><topic>Direct current</topic><topic>Electric potential</topic><topic>Electrostatic</topic><topic>Exact sciences and technology</topic><topic>Excitation</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Geometry</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>noninterdigitated combrives</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>parametric resonance</topic><topic>Physics</topic><topic>Resonance</topic><topic>Softening</topic><topic>Tuning</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeMartini, B.E.</creatorcontrib><creatorcontrib>Rhoads, J.F.</creatorcontrib><creatorcontrib>Turner, K.L.</creatorcontrib><creatorcontrib>Shaw, S.W.</creatorcontrib><creatorcontrib>Moehlis, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DeMartini, B.E.</au><au>Rhoads, J.F.</au><au>Turner, K.L.</au><au>Shaw, S.W.</au><au>Moehlis, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>16</volume><issue>2</issue><spage>310</spage><epage>318</epage><pages>310-318</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Microelectromechanical oscillators utilizing noninterdigitated combdrive actuators have the ability to be parametrically excited, which leads to distinct advantages over harmonically driven oscillators. Theory predicts that this type of actuator, when dc voltage is applied, can also be used for tuning the effective linear and nonlinear stiffnesses of an oscillator. For instance, the parametric instability region can be rotated by using a previously developed linear tuning scheme. This can be accomplished by implementing two sets of noninterdigitated combdrives, choosing the correct geometry and alignment for each, and applying ac excitation voltages to one set and proportional dc tuning voltages to the other set. Such an oscillator can also be tuned to display a desired nonlinear behavior: softening, hardening, or mixed nonlinearity. Nonlinear tuning is attained by carefully designing combdrive geometry, flexure geometry, and applying the correct dc voltages to the second set of actuators. Here, two oscillators have been designed, fabricated, and tested to prove these tuning concepts experimentally</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2007.892910</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2007-04, Vol.16 (2), p.310-318 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_ieee_primary_4147582 |
source | IEEE Xplore |
subjects | Actuators Direct current Electric potential Electrostatic Exact sciences and technology Excitation Filtering Frequency Geometry Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mechanical instruments, equipment and techniques Micromechanical devices Micromechanical devices and systems noninterdigitated combrives nonlinear Nonlinearity Oscillators parametric resonance Physics Resonance Softening Tuning Voltage |
title | Linear and Nonlinear Tuning of Parametrically Excited MEMS Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20and%20Nonlinear%20Tuning%20of%20Parametrically%20Excited%20MEMS%20Oscillators&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=DeMartini,%20B.E.&rft.date=2007-04-01&rft.volume=16&rft.issue=2&rft.spage=310&rft.epage=318&rft.pages=310-318&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2007.892910&rft_dat=%3Cproquest_RIE%3E903621039%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912233946&rft_id=info:pmid/&rft_ieee_id=4147582&rfr_iscdi=true |