Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals

Myoelectric signals (MES) are the electrical manifestation of muscular contractions and they can be used to create myoelectric prosthesis which is able to function with the amputee's muscle movements. This signal recorded at the surface of the skin of the forearm has been exploited to provide r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tsenov, G., Zeghbib, A.H., Palis, F., Shoylev, N., Mladenov, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 167
container_title
container_volume
creator Tsenov, G.
Zeghbib, A.H.
Palis, F.
Shoylev, N.
Mladenov, V.
description Myoelectric signals (MES) are the electrical manifestation of muscular contractions and they can be used to create myoelectric prosthesis which is able to function with the amputee's muscle movements. This signal recorded at the surface of the skin of the forearm has been exploited to provide recognition of the movement of the hand and finger movements of healthy subject. The objective of the paper is to describe the identification procedure, based on EMG patterns of forearm activity using various neural networks methods and to make a comparison between different intelligent computational methods of identification, which are used in this work. Then an online algorithm for movement identification and classification that utilises the trained neural networks is presented
doi_str_mv 10.1109/NEUREL.2006.341203
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4147191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4147191</ieee_id><sourcerecordid>4147191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-ee2a1de6003ad0b38b5c5bd39ae7d9bba5745c2f60b139baa2beca355da27cec3</originalsourceid><addsrcrecordid>eNo1jM1OwkAURscYExV5Ad3MC4B3ftoyS0MKmEBJVNZ4Z3pLRsvUzBQNby9GXZycnG_xMXYrYCwEmPuq3DyVy7EEyMdKCwnqjF0LLbUGrZQ5Z0NTTP5byks2TOkNAESRa2EmV-y1okPEllfUf3XxPfGmi3wdWh-IT1tMyTfeYe-7wLuGLzDU_IeZDzuKfNV90p5Cn_gmnRb-fIgNOuLlas6T3wVs0w27aE6i4Z8HbDMrX6aL0XI9f5w-LEdOSt2PiCSKmnIAhTVYNbGZy2ytDFJRG2sxK3TmZJODFcpYRGnJocqyGmXhyKkBu_v99US0_Yh-j_G41UIXwgj1DapVVyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tsenov, G. ; Zeghbib, A.H. ; Palis, F. ; Shoylev, N. ; Mladenov, V.</creator><creatorcontrib>Tsenov, G. ; Zeghbib, A.H. ; Palis, F. ; Shoylev, N. ; Mladenov, V.</creatorcontrib><description>Myoelectric signals (MES) are the electrical manifestation of muscular contractions and they can be used to create myoelectric prosthesis which is able to function with the amputee's muscle movements. This signal recorded at the surface of the skin of the forearm has been exploited to provide recognition of the movement of the hand and finger movements of healthy subject. The objective of the paper is to describe the identification procedure, based on EMG patterns of forearm activity using various neural networks methods and to make a comparison between different intelligent computational methods of identification, which are used in this work. Then an online algorithm for movement identification and classification that utilises the trained neural networks is presented</description><identifier>ISBN: 9781424404322</identifier><identifier>ISBN: 1424404320</identifier><identifier>EISBN: 1424404339</identifier><identifier>EISBN: 9781424404339</identifier><identifier>DOI: 10.1109/NEUREL.2006.341203</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Electrodes ; Electromyography ; EMG signals ; Feature extraction ; Fingers ; Hand and Finger Movements Identification ; Muscles ; Neural networks ; Signal analysis ; Signal processing ; Testing</subject><ispartof>2006 8th Seminar on Neural Network Applications in Electrical Engineering, 2006, p.167-171</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-ee2a1de6003ad0b38b5c5bd39ae7d9bba5745c2f60b139baa2beca355da27cec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4147191$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4147191$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsenov, G.</creatorcontrib><creatorcontrib>Zeghbib, A.H.</creatorcontrib><creatorcontrib>Palis, F.</creatorcontrib><creatorcontrib>Shoylev, N.</creatorcontrib><creatorcontrib>Mladenov, V.</creatorcontrib><title>Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals</title><title>2006 8th Seminar on Neural Network Applications in Electrical Engineering</title><addtitle>NEUREL</addtitle><description>Myoelectric signals (MES) are the electrical manifestation of muscular contractions and they can be used to create myoelectric prosthesis which is able to function with the amputee's muscle movements. This signal recorded at the surface of the skin of the forearm has been exploited to provide recognition of the movement of the hand and finger movements of healthy subject. The objective of the paper is to describe the identification procedure, based on EMG patterns of forearm activity using various neural networks methods and to make a comparison between different intelligent computational methods of identification, which are used in this work. Then an online algorithm for movement identification and classification that utilises the trained neural networks is presented</description><subject>Computational intelligence</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>EMG signals</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>Hand and Finger Movements Identification</subject><subject>Muscles</subject><subject>Neural networks</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Testing</subject><isbn>9781424404322</isbn><isbn>1424404320</isbn><isbn>1424404339</isbn><isbn>9781424404339</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jM1OwkAURscYExV5Ad3MC4B3ftoyS0MKmEBJVNZ4Z3pLRsvUzBQNby9GXZycnG_xMXYrYCwEmPuq3DyVy7EEyMdKCwnqjF0LLbUGrZQ5Z0NTTP5byks2TOkNAESRa2EmV-y1okPEllfUf3XxPfGmi3wdWh-IT1tMyTfeYe-7wLuGLzDU_IeZDzuKfNV90p5Cn_gmnRb-fIgNOuLlas6T3wVs0w27aE6i4Z8HbDMrX6aL0XI9f5w-LEdOSt2PiCSKmnIAhTVYNbGZy2ytDFJRG2sxK3TmZJODFcpYRGnJocqyGmXhyKkBu_v99US0_Yh-j_G41UIXwgj1DapVVyw</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Tsenov, G.</creator><creator>Zeghbib, A.H.</creator><creator>Palis, F.</creator><creator>Shoylev, N.</creator><creator>Mladenov, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200609</creationdate><title>Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals</title><author>Tsenov, G. ; Zeghbib, A.H. ; Palis, F. ; Shoylev, N. ; Mladenov, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-ee2a1de6003ad0b38b5c5bd39ae7d9bba5745c2f60b139baa2beca355da27cec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational intelligence</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>EMG signals</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>Hand and Finger Movements Identification</topic><topic>Muscles</topic><topic>Neural networks</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tsenov, G.</creatorcontrib><creatorcontrib>Zeghbib, A.H.</creatorcontrib><creatorcontrib>Palis, F.</creatorcontrib><creatorcontrib>Shoylev, N.</creatorcontrib><creatorcontrib>Mladenov, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsenov, G.</au><au>Zeghbib, A.H.</au><au>Palis, F.</au><au>Shoylev, N.</au><au>Mladenov, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals</atitle><btitle>2006 8th Seminar on Neural Network Applications in Electrical Engineering</btitle><stitle>NEUREL</stitle><date>2006-09</date><risdate>2006</risdate><spage>167</spage><epage>171</epage><pages>167-171</pages><isbn>9781424404322</isbn><isbn>1424404320</isbn><eisbn>1424404339</eisbn><eisbn>9781424404339</eisbn><abstract>Myoelectric signals (MES) are the electrical manifestation of muscular contractions and they can be used to create myoelectric prosthesis which is able to function with the amputee's muscle movements. This signal recorded at the surface of the skin of the forearm has been exploited to provide recognition of the movement of the hand and finger movements of healthy subject. The objective of the paper is to describe the identification procedure, based on EMG patterns of forearm activity using various neural networks methods and to make a comparison between different intelligent computational methods of identification, which are used in this work. Then an online algorithm for movement identification and classification that utilises the trained neural networks is presented</abstract><pub>IEEE</pub><doi>10.1109/NEUREL.2006.341203</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424404322
ispartof 2006 8th Seminar on Neural Network Applications in Electrical Engineering, 2006, p.167-171
issn
language eng
recordid cdi_ieee_primary_4147191
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Electrodes
Electromyography
EMG signals
Feature extraction
Fingers
Hand and Finger Movements Identification
Muscles
Neural networks
Signal analysis
Signal processing
Testing
title Neural Networks for Online Classification of Hand and Finger Movements Using Surface EMG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20Networks%20for%20Online%20Classification%20of%20Hand%20and%20Finger%20Movements%20Using%20Surface%20EMG%20signals&rft.btitle=2006%208th%20Seminar%20on%20Neural%20Network%20Applications%20in%20Electrical%20Engineering&rft.au=Tsenov,%20G.&rft.date=2006-09&rft.spage=167&rft.epage=171&rft.pages=167-171&rft.isbn=9781424404322&rft.isbn_list=1424404320&rft_id=info:doi/10.1109/NEUREL.2006.341203&rft_dat=%3Cieee_6IE%3E4147191%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424404339&rft.eisbn_list=9781424404339&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4147191&rfr_iscdi=true