Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication
Video object segmentation and tracking has been widely used in many video communication applications. This paper proposes an effective method of detecting and tracking the moving maritime objects in video sequences. An approximation algorithm, which adopts visual attention architecture to reduce the...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Wu Qiying Cui Huali Du Xiaofeng Wang Mingfen Jin Taisong |
description | Video object segmentation and tracking has been widely used in many video communication applications. This paper proposes an effective method of detecting and tracking the moving maritime objects in video sequences. An approximation algorithm, which adopts visual attention architecture to reduce the wavy noises and make the object distinct from the background, segments the regions of interest quickly. Then, a modified temporal differencing method is proposed to eliminate the background and detect the moving maritime object. On the multi-object tracking process, an adaptive choosing the global nearest neighbor algorithm is presented based on a linear dynamic model. Furthermore, an effective occlusion reasoning method is proposed, which partly solves the occlusion problem. Experimental results show that the proposed real-time system performs well in various maritime video sequences. |
doi_str_mv | 10.1109/ICCT.2006.342005 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4146606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4146606</ieee_id><sourcerecordid>4146606</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-35186da91cae7141e53c8ddd37ccbceee64aa97cdd089c0ecc4ed1c429aeaada3</originalsourceid><addsrcrecordid>eNo1jMFKw0AURUdEUNvsBTfzA4lvMpNJZilBbaGl0Aa35fXNa5naJJJEwb83Vr2bw4HDFeJOQaIUuId5WVZJCmATbUZkF-JWmdQYKEDZSxG5vPh3cNci6vsjjNNO58bdiM2a8RQPoWa5bD9Dc5BL7MLZV7sj09DLDR9qbgYcQttIbLysOqS3n3TfdvI1eG5l2db1RxPoHE3F1R5PPUd_nIjq-akqZ_Fi9TIvHxdxcDDEOlOF9egUIefKKM40Fd57nRPtiJmtQXQ5eQ-FI2Aiw16RSR0yokc9Efe_t2GMt-9dqLH72hplrAWrvwEbAlKv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wu Qiying ; Cui Huali ; Du Xiaofeng ; Wang Mingfen ; Jin Taisong</creator><creatorcontrib>Wu Qiying ; Cui Huali ; Du Xiaofeng ; Wang Mingfen ; Jin Taisong</creatorcontrib><description>Video object segmentation and tracking has been widely used in many video communication applications. This paper proposes an effective method of detecting and tracking the moving maritime objects in video sequences. An approximation algorithm, which adopts visual attention architecture to reduce the wavy noises and make the object distinct from the background, segments the regions of interest quickly. Then, a modified temporal differencing method is proposed to eliminate the background and detect the moving maritime object. On the multi-object tracking process, an adaptive choosing the global nearest neighbor algorithm is presented based on a linear dynamic model. Furthermore, an effective occlusion reasoning method is proposed, which partly solves the occlusion problem. Experimental results show that the proposed real-time system performs well in various maritime video sequences.</description><identifier>ISBN: 9781424408009</identifier><identifier>ISBN: 1424408008</identifier><identifier>EISBN: 1424408016</identifier><identifier>EISBN: 9781424408016</identifier><identifier>DOI: 10.1109/ICCT.2006.342005</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer science ; Image analysis ; Image resolution ; Image segmentation ; Object detection ; Object segmentation ; Spatial resolution ; Video sequences ; Videoconference</subject><ispartof>2006 International Conference on Communication Technology, 2006, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4146606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4146606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu Qiying</creatorcontrib><creatorcontrib>Cui Huali</creatorcontrib><creatorcontrib>Du Xiaofeng</creatorcontrib><creatorcontrib>Wang Mingfen</creatorcontrib><creatorcontrib>Jin Taisong</creatorcontrib><title>Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication</title><title>2006 International Conference on Communication Technology</title><addtitle>ICCT</addtitle><description>Video object segmentation and tracking has been widely used in many video communication applications. This paper proposes an effective method of detecting and tracking the moving maritime objects in video sequences. An approximation algorithm, which adopts visual attention architecture to reduce the wavy noises and make the object distinct from the background, segments the regions of interest quickly. Then, a modified temporal differencing method is proposed to eliminate the background and detect the moving maritime object. On the multi-object tracking process, an adaptive choosing the global nearest neighbor algorithm is presented based on a linear dynamic model. Furthermore, an effective occlusion reasoning method is proposed, which partly solves the occlusion problem. Experimental results show that the proposed real-time system performs well in various maritime video sequences.</description><subject>Application software</subject><subject>Computer science</subject><subject>Image analysis</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Object detection</subject><subject>Object segmentation</subject><subject>Spatial resolution</subject><subject>Video sequences</subject><subject>Videoconference</subject><isbn>9781424408009</isbn><isbn>1424408008</isbn><isbn>1424408016</isbn><isbn>9781424408016</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jMFKw0AURUdEUNvsBTfzA4lvMpNJZilBbaGl0Aa35fXNa5naJJJEwb83Vr2bw4HDFeJOQaIUuId5WVZJCmATbUZkF-JWmdQYKEDZSxG5vPh3cNci6vsjjNNO58bdiM2a8RQPoWa5bD9Dc5BL7MLZV7sj09DLDR9qbgYcQttIbLysOqS3n3TfdvI1eG5l2db1RxPoHE3F1R5PPUd_nIjq-akqZ_Fi9TIvHxdxcDDEOlOF9egUIefKKM40Fd57nRPtiJmtQXQ5eQ-FI2Aiw16RSR0yokc9Efe_t2GMt-9dqLH72hplrAWrvwEbAlKv</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Wu Qiying</creator><creator>Cui Huali</creator><creator>Du Xiaofeng</creator><creator>Wang Mingfen</creator><creator>Jin Taisong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200611</creationdate><title>Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication</title><author>Wu Qiying ; Cui Huali ; Du Xiaofeng ; Wang Mingfen ; Jin Taisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-35186da91cae7141e53c8ddd37ccbceee64aa97cdd089c0ecc4ed1c429aeaada3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Computer science</topic><topic>Image analysis</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Object detection</topic><topic>Object segmentation</topic><topic>Spatial resolution</topic><topic>Video sequences</topic><topic>Videoconference</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu Qiying</creatorcontrib><creatorcontrib>Cui Huali</creatorcontrib><creatorcontrib>Du Xiaofeng</creatorcontrib><creatorcontrib>Wang Mingfen</creatorcontrib><creatorcontrib>Jin Taisong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu Qiying</au><au>Cui Huali</au><au>Du Xiaofeng</au><au>Wang Mingfen</au><au>Jin Taisong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication</atitle><btitle>2006 International Conference on Communication Technology</btitle><stitle>ICCT</stitle><date>2006-11</date><risdate>2006</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>9781424408009</isbn><isbn>1424408008</isbn><eisbn>1424408016</eisbn><eisbn>9781424408016</eisbn><abstract>Video object segmentation and tracking has been widely used in many video communication applications. This paper proposes an effective method of detecting and tracking the moving maritime objects in video sequences. An approximation algorithm, which adopts visual attention architecture to reduce the wavy noises and make the object distinct from the background, segments the regions of interest quickly. Then, a modified temporal differencing method is proposed to eliminate the background and detect the moving maritime object. On the multi-object tracking process, an adaptive choosing the global nearest neighbor algorithm is presented based on a linear dynamic model. Furthermore, an effective occlusion reasoning method is proposed, which partly solves the occlusion problem. Experimental results show that the proposed real-time system performs well in various maritime video sequences.</abstract><pub>IEEE</pub><doi>10.1109/ICCT.2006.342005</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424408009 |
ispartof | 2006 International Conference on Communication Technology, 2006, p.1-4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4146606 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computer science Image analysis Image resolution Image segmentation Object detection Object segmentation Spatial resolution Video sequences Videoconference |
title | Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20Moving%20Maritime%20Objects%20Segmentation%20and%20Tracking%20for%20Video%20Communication&rft.btitle=2006%20International%20Conference%20on%20Communication%20Technology&rft.au=Wu%20Qiying&rft.date=2006-11&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=9781424408009&rft.isbn_list=1424408008&rft_id=info:doi/10.1109/ICCT.2006.342005&rft_dat=%3Cieee_6IE%3E4146606%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424408016&rft.eisbn_list=9781424408016&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4146606&rfr_iscdi=true |