Power Signal Forecasting by Neural Model with Different Layer Structures

In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rey-Chue Hwang, Yu-Ju Chen, Shang-Jen Chuang, Huang-Chu Huang, Chuo-Yean Chang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Rey-Chue Hwang
Yu-Ju Chen
Shang-Jen Chuang
Huang-Chu Huang
Chuo-Yean Chang
description In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model
doi_str_mv 10.1109/TENCON.2006.343877
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4142142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4142142</ieee_id><sourcerecordid>4142142</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9c7188159566b5989f9f5158f958ed41d97f7feb98cf418a9a8abdd571c195a03</originalsourceid><addsrcrecordid>eNo9T9tKxDAUjDdwXfsD-pIfaE3apMl5lLrrCrUr2PclbU_WSG0l7bL07614GQYOzDDDGUJuOIs4Z3BXropsW0QxY2mUiEQrdUKuuIiFYFIAPyWLmEsIEyHZGQlA6T9Ps_N_T8SXJBiGdzYjgTRN2YJsXvojevrq9p1p6br3WJthdN2eVhMt8OBn9blvsKVHN77RB2cteuxGmpvpOzf6Qz0ePA7X5MKadsDg9y5JuV6V2SbMt49P2X0eOmBjCLXiWs_vyDStJGiwYCWX2oLU2AjegLLKYgW6toJrA0abqmmk4jUHaViyJLc_tQ4Rd5_efRg_7cQ8d2byBcAVUM8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</creator><creatorcontrib>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</creatorcontrib><description>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424405480</identifier><identifier>ISBN: 1424405483</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424405491</identifier><identifier>EISBN: 9781424405497</identifier><identifier>DOI: 10.1109/TENCON.2006.343877</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Demand forecasting ; Energy management ; Feedforward systems ; forecasting ; Load forecasting ; neural model ; Neural networks ; neuron type ; Neurons ; non-stationary ; power load ; Predictive models ; Signal processing ; Transfer functions</subject><ispartof>TENCON 2006 - 2006 IEEE Region 10 Conference, 2006, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4142142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4142142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rey-Chue Hwang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Shang-Jen Chuang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><title>TENCON 2006 - 2006 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</description><subject>Companies</subject><subject>Demand forecasting</subject><subject>Energy management</subject><subject>Feedforward systems</subject><subject>forecasting</subject><subject>Load forecasting</subject><subject>neural model</subject><subject>Neural networks</subject><subject>neuron type</subject><subject>Neurons</subject><subject>non-stationary</subject><subject>power load</subject><subject>Predictive models</subject><subject>Signal processing</subject><subject>Transfer functions</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424405480</isbn><isbn>1424405483</isbn><isbn>1424405491</isbn><isbn>9781424405497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9T9tKxDAUjDdwXfsD-pIfaE3apMl5lLrrCrUr2PclbU_WSG0l7bL07614GQYOzDDDGUJuOIs4Z3BXropsW0QxY2mUiEQrdUKuuIiFYFIAPyWLmEsIEyHZGQlA6T9Ps_N_T8SXJBiGdzYjgTRN2YJsXvojevrq9p1p6br3WJthdN2eVhMt8OBn9blvsKVHN77RB2cteuxGmpvpOzf6Qz0ePA7X5MKadsDg9y5JuV6V2SbMt49P2X0eOmBjCLXiWs_vyDStJGiwYCWX2oLU2AjegLLKYgW6toJrA0abqmmk4jUHaViyJLc_tQ4Rd5_efRg_7cQ8d2byBcAVUM8</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Rey-Chue Hwang</creator><creator>Yu-Ju Chen</creator><creator>Shang-Jen Chuang</creator><creator>Huang-Chu Huang</creator><creator>Chuo-Yean Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200611</creationdate><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><author>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9c7188159566b5989f9f5158f958ed41d97f7feb98cf418a9a8abdd571c195a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Companies</topic><topic>Demand forecasting</topic><topic>Energy management</topic><topic>Feedforward systems</topic><topic>forecasting</topic><topic>Load forecasting</topic><topic>neural model</topic><topic>Neural networks</topic><topic>neuron type</topic><topic>Neurons</topic><topic>non-stationary</topic><topic>power load</topic><topic>Predictive models</topic><topic>Signal processing</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Rey-Chue Hwang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Shang-Jen Chuang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rey-Chue Hwang</au><au>Yu-Ju Chen</au><au>Shang-Jen Chuang</au><au>Huang-Chu Huang</au><au>Chuo-Yean Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power Signal Forecasting by Neural Model with Different Layer Structures</atitle><btitle>TENCON 2006 - 2006 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2006-11</date><risdate>2006</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424405480</isbn><isbn>1424405483</isbn><eisbn>1424405491</eisbn><eisbn>9781424405497</eisbn><abstract>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2006.343877</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-3442
ispartof TENCON 2006 - 2006 IEEE Region 10 Conference, 2006, p.1-4
issn 2159-3442
2159-3450
language eng
recordid cdi_ieee_primary_4142142
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Companies
Demand forecasting
Energy management
Feedforward systems
forecasting
Load forecasting
neural model
Neural networks
neuron type
Neurons
non-stationary
power load
Predictive models
Signal processing
Transfer functions
title Power Signal Forecasting by Neural Model with Different Layer Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power%20Signal%20Forecasting%20by%20Neural%20Model%20with%20Different%20Layer%20Structures&rft.btitle=TENCON%202006%20-%202006%20IEEE%20Region%2010%20Conference&rft.au=Rey-Chue%20Hwang&rft.date=2006-11&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424405480&rft.isbn_list=1424405483&rft_id=info:doi/10.1109/TENCON.2006.343877&rft_dat=%3Cieee_6IE%3E4142142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405491&rft.eisbn_list=9781424405497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4142142&rfr_iscdi=true