Power Signal Forecasting by Neural Model with Different Layer Structures
In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accur...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Rey-Chue Hwang Yu-Ju Chen Shang-Jen Chuang Huang-Chu Huang Chuo-Yean Chang |
description | In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model |
doi_str_mv | 10.1109/TENCON.2006.343877 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4142142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4142142</ieee_id><sourcerecordid>4142142</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9c7188159566b5989f9f5158f958ed41d97f7feb98cf418a9a8abdd571c195a03</originalsourceid><addsrcrecordid>eNo9T9tKxDAUjDdwXfsD-pIfaE3apMl5lLrrCrUr2PclbU_WSG0l7bL07614GQYOzDDDGUJuOIs4Z3BXropsW0QxY2mUiEQrdUKuuIiFYFIAPyWLmEsIEyHZGQlA6T9Ps_N_T8SXJBiGdzYjgTRN2YJsXvojevrq9p1p6br3WJthdN2eVhMt8OBn9blvsKVHN77RB2cteuxGmpvpOzf6Qz0ePA7X5MKadsDg9y5JuV6V2SbMt49P2X0eOmBjCLXiWs_vyDStJGiwYCWX2oLU2AjegLLKYgW6toJrA0abqmmk4jUHaViyJLc_tQ4Rd5_efRg_7cQ8d2byBcAVUM8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</creator><creatorcontrib>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</creatorcontrib><description>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</description><identifier>ISSN: 2159-3442</identifier><identifier>ISBN: 9781424405480</identifier><identifier>ISBN: 1424405483</identifier><identifier>EISSN: 2159-3450</identifier><identifier>EISBN: 1424405491</identifier><identifier>EISBN: 9781424405497</identifier><identifier>DOI: 10.1109/TENCON.2006.343877</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Demand forecasting ; Energy management ; Feedforward systems ; forecasting ; Load forecasting ; neural model ; Neural networks ; neuron type ; Neurons ; non-stationary ; power load ; Predictive models ; Signal processing ; Transfer functions</subject><ispartof>TENCON 2006 - 2006 IEEE Region 10 Conference, 2006, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4142142$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4142142$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rey-Chue Hwang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Shang-Jen Chuang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><title>TENCON 2006 - 2006 IEEE Region 10 Conference</title><addtitle>TENCON</addtitle><description>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</description><subject>Companies</subject><subject>Demand forecasting</subject><subject>Energy management</subject><subject>Feedforward systems</subject><subject>forecasting</subject><subject>Load forecasting</subject><subject>neural model</subject><subject>Neural networks</subject><subject>neuron type</subject><subject>Neurons</subject><subject>non-stationary</subject><subject>power load</subject><subject>Predictive models</subject><subject>Signal processing</subject><subject>Transfer functions</subject><issn>2159-3442</issn><issn>2159-3450</issn><isbn>9781424405480</isbn><isbn>1424405483</isbn><isbn>1424405491</isbn><isbn>9781424405497</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9T9tKxDAUjDdwXfsD-pIfaE3apMl5lLrrCrUr2PclbU_WSG0l7bL07614GQYOzDDDGUJuOIs4Z3BXropsW0QxY2mUiEQrdUKuuIiFYFIAPyWLmEsIEyHZGQlA6T9Ps_N_T8SXJBiGdzYjgTRN2YJsXvojevrq9p1p6br3WJthdN2eVhMt8OBn9blvsKVHN77RB2cteuxGmpvpOzf6Qz0ePA7X5MKadsDg9y5JuV6V2SbMt49P2X0eOmBjCLXiWs_vyDStJGiwYCWX2oLU2AjegLLKYgW6toJrA0abqmmk4jUHaViyJLc_tQ4Rd5_efRg_7cQ8d2byBcAVUM8</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Rey-Chue Hwang</creator><creator>Yu-Ju Chen</creator><creator>Shang-Jen Chuang</creator><creator>Huang-Chu Huang</creator><creator>Chuo-Yean Chang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200611</creationdate><title>Power Signal Forecasting by Neural Model with Different Layer Structures</title><author>Rey-Chue Hwang ; Yu-Ju Chen ; Shang-Jen Chuang ; Huang-Chu Huang ; Chuo-Yean Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9c7188159566b5989f9f5158f958ed41d97f7feb98cf418a9a8abdd571c195a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Companies</topic><topic>Demand forecasting</topic><topic>Energy management</topic><topic>Feedforward systems</topic><topic>forecasting</topic><topic>Load forecasting</topic><topic>neural model</topic><topic>Neural networks</topic><topic>neuron type</topic><topic>Neurons</topic><topic>non-stationary</topic><topic>power load</topic><topic>Predictive models</topic><topic>Signal processing</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Rey-Chue Hwang</creatorcontrib><creatorcontrib>Yu-Ju Chen</creatorcontrib><creatorcontrib>Shang-Jen Chuang</creatorcontrib><creatorcontrib>Huang-Chu Huang</creatorcontrib><creatorcontrib>Chuo-Yean Chang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rey-Chue Hwang</au><au>Yu-Ju Chen</au><au>Shang-Jen Chuang</au><au>Huang-Chu Huang</au><au>Chuo-Yean Chang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power Signal Forecasting by Neural Model with Different Layer Structures</atitle><btitle>TENCON 2006 - 2006 IEEE Region 10 Conference</btitle><stitle>TENCON</stitle><date>2006-11</date><risdate>2006</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2159-3442</issn><eissn>2159-3450</eissn><isbn>9781424405480</isbn><isbn>1424405483</isbn><eisbn>1424405491</eisbn><eisbn>9781424405497</eisbn><abstract>In this paper, the non-stationary power load forecasting by using neural model with different layer structures is presented. In the neural forecasting model we developed, the neuron types used in different layers are different. Each layer is composed of the same kind of neurons. A reliable and accurate neural forecasting model for the non-stationary power loads is trying to be found in this study. To demonstrate the superiority of the model we created, all simulations are executed by using the conventional neural model with same neurons as a comparison. From the results shown, it is clearly found that the neural model we constructed do have better nonlinear mapping and forecasting capabilities in comparison with the conventional neural model</abstract><pub>IEEE</pub><doi>10.1109/TENCON.2006.343877</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-3442 |
ispartof | TENCON 2006 - 2006 IEEE Region 10 Conference, 2006, p.1-4 |
issn | 2159-3442 2159-3450 |
language | eng |
recordid | cdi_ieee_primary_4142142 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Companies Demand forecasting Energy management Feedforward systems forecasting Load forecasting neural model Neural networks neuron type Neurons non-stationary power load Predictive models Signal processing Transfer functions |
title | Power Signal Forecasting by Neural Model with Different Layer Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power%20Signal%20Forecasting%20by%20Neural%20Model%20with%20Different%20Layer%20Structures&rft.btitle=TENCON%202006%20-%202006%20IEEE%20Region%2010%20Conference&rft.au=Rey-Chue%20Hwang&rft.date=2006-11&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2159-3442&rft.eissn=2159-3450&rft.isbn=9781424405480&rft.isbn_list=1424405483&rft_id=info:doi/10.1109/TENCON.2006.343877&rft_dat=%3Cieee_6IE%3E4142142%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405491&rft.eisbn_list=9781424405497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4142142&rfr_iscdi=true |