A Personalized Stock Recommendation System using Adaptive User Modeling

In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chalidabhongse, T.H., Kaensar, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue
container_start_page 463
container_title
container_volume
creator Chalidabhongse, T.H.
Kaensar, C.
description In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise
doi_str_mv 10.1109/ISCIT.2006.339989
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4141428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4141428</ieee_id><sourcerecordid>4141428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b96a1922350c9803ec9c95c86642fad7e079b8a5605ce18bcd09955ce40482343</originalsourceid><addsrcrecordid>eNpVTk1LxDAUjIigrP0B4iV_oOtL07R5x1J0Lawotp6XNH0r0X4sTRXWX78BvTgzMDPv8BjGbgSshQC8q-qyatYJQLaWElHjGYsw1xAkMU-FOv_XQV-yyPsPCJCoUp1csU3BX2j202h690Mdr5fJfvJXstMw0NiZxU0jr49-oYF_eTe-86Izh8V9E3_zNPOnqaM-nK_Zxd70nqI_X7Hm4b4pH-Pt86Yqi23sEJa4xcwITBKpwGIYRRYtKquzLE32pssJcmy1URkoS0K3tgNEFXIKYa1M5Yrd_r51RLQ7zG4w83GXisBEyxOmHUzf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chalidabhongse, T.H. ; Kaensar, C.</creator><creatorcontrib>Chalidabhongse, T.H. ; Kaensar, C.</creatorcontrib><description>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</description><identifier>ISBN: 9780780397408</identifier><identifier>ISBN: 0780397401</identifier><identifier>EISBN: 9780780397415</identifier><identifier>EISBN: 078039741X</identifier><identifier>DOI: 10.1109/ISCIT.2006.339989</identifier><language>eng</language><subject>Adaptive systems ; Humans ; Information technology ; Investments ; Java ; Monitoring ; Motion pictures ; Performance evaluation ; Prototypes ; Real time systems</subject><ispartof>2006 International Symposium on Communications and Information Technologies, 2006, p.463-468</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4141428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4141428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chalidabhongse, T.H.</creatorcontrib><creatorcontrib>Kaensar, C.</creatorcontrib><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><title>2006 International Symposium on Communications and Information Technologies</title><addtitle>ISCIT</addtitle><description>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</description><subject>Adaptive systems</subject><subject>Humans</subject><subject>Information technology</subject><subject>Investments</subject><subject>Java</subject><subject>Monitoring</subject><subject>Motion pictures</subject><subject>Performance evaluation</subject><subject>Prototypes</subject><subject>Real time systems</subject><isbn>9780780397408</isbn><isbn>0780397401</isbn><isbn>9780780397415</isbn><isbn>078039741X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVTk1LxDAUjIigrP0B4iV_oOtL07R5x1J0Lawotp6XNH0r0X4sTRXWX78BvTgzMDPv8BjGbgSshQC8q-qyatYJQLaWElHjGYsw1xAkMU-FOv_XQV-yyPsPCJCoUp1csU3BX2j202h690Mdr5fJfvJXstMw0NiZxU0jr49-oYF_eTe-86Izh8V9E3_zNPOnqaM-nK_Zxd70nqI_X7Hm4b4pH-Pt86Yqi23sEJa4xcwITBKpwGIYRRYtKquzLE32pssJcmy1URkoS0K3tgNEFXIKYa1M5Yrd_r51RLQ7zG4w83GXisBEyxOmHUzf</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Chalidabhongse, T.H.</creator><creator>Kaensar, C.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><author>Chalidabhongse, T.H. ; Kaensar, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b96a1922350c9803ec9c95c86642fad7e079b8a5605ce18bcd09955ce40482343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive systems</topic><topic>Humans</topic><topic>Information technology</topic><topic>Investments</topic><topic>Java</topic><topic>Monitoring</topic><topic>Motion pictures</topic><topic>Performance evaluation</topic><topic>Prototypes</topic><topic>Real time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chalidabhongse, T.H.</creatorcontrib><creatorcontrib>Kaensar, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chalidabhongse, T.H.</au><au>Kaensar, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Personalized Stock Recommendation System using Adaptive User Modeling</atitle><btitle>2006 International Symposium on Communications and Information Technologies</btitle><stitle>ISCIT</stitle><date>2006-10</date><risdate>2006</risdate><spage>463</spage><epage>468</epage><pages>463-468</pages><isbn>9780780397408</isbn><isbn>0780397401</isbn><eisbn>9780780397415</eisbn><eisbn>078039741X</eisbn><abstract>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</abstract><doi>10.1109/ISCIT.2006.339989</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780397408
ispartof 2006 International Symposium on Communications and Information Technologies, 2006, p.463-468
issn
language eng
recordid cdi_ieee_primary_4141428
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive systems
Humans
Information technology
Investments
Java
Monitoring
Motion pictures
Performance evaluation
Prototypes
Real time systems
title A Personalized Stock Recommendation System using Adaptive User Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Personalized%20Stock%20Recommendation%20System%20using%20Adaptive%20User%20Modeling&rft.btitle=2006%20International%20Symposium%20on%20Communications%20and%20Information%20Technologies&rft.au=Chalidabhongse,%20T.H.&rft.date=2006-10&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.isbn=9780780397408&rft.isbn_list=0780397401&rft_id=info:doi/10.1109/ISCIT.2006.339989&rft_dat=%3Cieee_6IE%3E4141428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780397415&rft.eisbn_list=078039741X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4141428&rfr_iscdi=true