A Personalized Stock Recommendation System using Adaptive User Modeling
In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | |
container_start_page | 463 |
container_title | |
container_volume | |
creator | Chalidabhongse, T.H. Kaensar, C. |
description | In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise |
doi_str_mv | 10.1109/ISCIT.2006.339989 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4141428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4141428</ieee_id><sourcerecordid>4141428</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b96a1922350c9803ec9c95c86642fad7e079b8a5605ce18bcd09955ce40482343</originalsourceid><addsrcrecordid>eNpVTk1LxDAUjIigrP0B4iV_oOtL07R5x1J0Lawotp6XNH0r0X4sTRXWX78BvTgzMDPv8BjGbgSshQC8q-qyatYJQLaWElHjGYsw1xAkMU-FOv_XQV-yyPsPCJCoUp1csU3BX2j202h690Mdr5fJfvJXstMw0NiZxU0jr49-oYF_eTe-86Izh8V9E3_zNPOnqaM-nK_Zxd70nqI_X7Hm4b4pH-Pt86Yqi23sEJa4xcwITBKpwGIYRRYtKquzLE32pssJcmy1URkoS0K3tgNEFXIKYa1M5Yrd_r51RLQ7zG4w83GXisBEyxOmHUzf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chalidabhongse, T.H. ; Kaensar, C.</creator><creatorcontrib>Chalidabhongse, T.H. ; Kaensar, C.</creatorcontrib><description>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</description><identifier>ISBN: 9780780397408</identifier><identifier>ISBN: 0780397401</identifier><identifier>EISBN: 9780780397415</identifier><identifier>EISBN: 078039741X</identifier><identifier>DOI: 10.1109/ISCIT.2006.339989</identifier><language>eng</language><subject>Adaptive systems ; Humans ; Information technology ; Investments ; Java ; Monitoring ; Motion pictures ; Performance evaluation ; Prototypes ; Real time systems</subject><ispartof>2006 International Symposium on Communications and Information Technologies, 2006, p.463-468</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4141428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2060,27932,54927</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4141428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chalidabhongse, T.H.</creatorcontrib><creatorcontrib>Kaensar, C.</creatorcontrib><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><title>2006 International Symposium on Communications and Information Technologies</title><addtitle>ISCIT</addtitle><description>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</description><subject>Adaptive systems</subject><subject>Humans</subject><subject>Information technology</subject><subject>Investments</subject><subject>Java</subject><subject>Monitoring</subject><subject>Motion pictures</subject><subject>Performance evaluation</subject><subject>Prototypes</subject><subject>Real time systems</subject><isbn>9780780397408</isbn><isbn>0780397401</isbn><isbn>9780780397415</isbn><isbn>078039741X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVTk1LxDAUjIigrP0B4iV_oOtL07R5x1J0Lawotp6XNH0r0X4sTRXWX78BvTgzMDPv8BjGbgSshQC8q-qyatYJQLaWElHjGYsw1xAkMU-FOv_XQV-yyPsPCJCoUp1csU3BX2j202h690Mdr5fJfvJXstMw0NiZxU0jr49-oYF_eTe-86Izh8V9E3_zNPOnqaM-nK_Zxd70nqI_X7Hm4b4pH-Pt86Yqi23sEJa4xcwITBKpwGIYRRYtKquzLE32pssJcmy1URkoS0K3tgNEFXIKYa1M5Yrd_r51RLQ7zG4w83GXisBEyxOmHUzf</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Chalidabhongse, T.H.</creator><creator>Kaensar, C.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>A Personalized Stock Recommendation System using Adaptive User Modeling</title><author>Chalidabhongse, T.H. ; Kaensar, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b96a1922350c9803ec9c95c86642fad7e079b8a5605ce18bcd09955ce40482343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive systems</topic><topic>Humans</topic><topic>Information technology</topic><topic>Investments</topic><topic>Java</topic><topic>Monitoring</topic><topic>Motion pictures</topic><topic>Performance evaluation</topic><topic>Prototypes</topic><topic>Real time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chalidabhongse, T.H.</creatorcontrib><creatorcontrib>Kaensar, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chalidabhongse, T.H.</au><au>Kaensar, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Personalized Stock Recommendation System using Adaptive User Modeling</atitle><btitle>2006 International Symposium on Communications and Information Technologies</btitle><stitle>ISCIT</stitle><date>2006-10</date><risdate>2006</risdate><spage>463</spage><epage>468</epage><pages>463-468</pages><isbn>9780780397408</isbn><isbn>0780397401</isbn><eisbn>9780780397415</eisbn><eisbn>078039741X</eisbn><abstract>In this paper, a new framework for personalized stock recommendation system based on adaptive user models is presented. The system is designed to provide personalized and appropriated information to the investors based on their personal profiles and their historical system interactions. The system components include initializing and updating user models, monitoring the interaction of the user to the system, tailoring the information to meet the user's behavior and investment styles. The system prototype was implemented in JAVA. The system evaluations were performed on both synthetic subjects and real human subjects. The results show our proposed system is able to rapidly self-adapted to provide appropriate advice to each user who has a wide variety of interest, backgrounds and expertise</abstract><doi>10.1109/ISCIT.2006.339989</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780397408 |
ispartof | 2006 International Symposium on Communications and Information Technologies, 2006, p.463-468 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4141428 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems Humans Information technology Investments Java Monitoring Motion pictures Performance evaluation Prototypes Real time systems |
title | A Personalized Stock Recommendation System using Adaptive User Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Personalized%20Stock%20Recommendation%20System%20using%20Adaptive%20User%20Modeling&rft.btitle=2006%20International%20Symposium%20on%20Communications%20and%20Information%20Technologies&rft.au=Chalidabhongse,%20T.H.&rft.date=2006-10&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.isbn=9780780397408&rft.isbn_list=0780397401&rft_id=info:doi/10.1109/ISCIT.2006.339989&rft_dat=%3Cieee_6IE%3E4141428%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780397415&rft.eisbn_list=078039741X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4141428&rfr_iscdi=true |