Watershed-driven relaxation labeling for image segmentation

Introduces an image segmentation method referred to as watershed-driven relaxation labeling. The method is a hybrid segmentation process utilizing both watershed analysis and relaxation labeling. Initially, watershed analysis is used to subdivide an image into catchment basins, effectively clusterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hansen, M.W., Higgins, W.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464 vol.3
container_issue
container_start_page 460
container_title
container_volume 3
creator Hansen, M.W.
Higgins, W.E.
description Introduces an image segmentation method referred to as watershed-driven relaxation labeling. The method is a hybrid segmentation process utilizing both watershed analysis and relaxation labeling. Initially, watershed analysis is used to subdivide an image into catchment basins, effectively clustering pixels together based on their spatial proximity and intensity homogeneity. Classification estimates in the form of probabilities are set for each of these catchment basins. Relaxation labeling is then used to iteratively refine and update the classifications of the catchment basins through propagating constraints and utilizing local information. The relaxation updating process is continued until a large majority of the catchment basins are unambiguously classified. The method provides fast, accurate segmentation results and exploits the individual strengths of watershed analysis and relaxation labeling. The robustness of the method is illustrated through comparisons to other popular segmentation techniques.< >
doi_str_mv 10.1109/ICIP.1994.413764
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_413764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>413764</ieee_id><sourcerecordid>413764</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-f801baa180d726de5515f9b63802dc7c32a52fdfd2d88bb2774215db4885dfd13</originalsourceid><addsrcrecordid>eNotT81KAzEYDIig1t7FU15g13z5D55kUbtQ0EOLx5I0X9bIdivZRfTtXaxzGWYGhhlCboDVAMzdtU37WoNzspYgjJZn5IpZsFo7xc0FWY7jB5sxaw7mkty_-QnL-I6xiiV_4UAL9v7bT_k40N4H7PPQ0XQsNB98h3TE7oDD9Jdfk_Pk-xGX_7wg26fHTbOq1i_PbfOwrjIYOVXJMgjeg2XRcB1RKVDJBS0s43Fv9oJ7xVNMkUdrQ-DGSA4qBmmtml0QC3J76s2IuPss85LyszvdE788sEYq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Watershed-driven relaxation labeling for image segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hansen, M.W. ; Higgins, W.E.</creator><creatorcontrib>Hansen, M.W. ; Higgins, W.E.</creatorcontrib><description>Introduces an image segmentation method referred to as watershed-driven relaxation labeling. The method is a hybrid segmentation process utilizing both watershed analysis and relaxation labeling. Initially, watershed analysis is used to subdivide an image into catchment basins, effectively clustering pixels together based on their spatial proximity and intensity homogeneity. Classification estimates in the form of probabilities are set for each of these catchment basins. Relaxation labeling is then used to iteratively refine and update the classifications of the catchment basins through propagating constraints and utilizing local information. The relaxation updating process is continued until a large majority of the catchment basins are unambiguously classified. The method provides fast, accurate segmentation results and exploits the individual strengths of watershed analysis and relaxation labeling. The robustness of the method is illustrated through comparisons to other popular segmentation techniques.&lt; &gt;</description><identifier>ISBN: 0818669527</identifier><identifier>ISBN: 9780818669521</identifier><identifier>DOI: 10.1109/ICIP.1994.413764</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Cancer ; Computational efficiency ; Gray-scale ; Image analysis ; Image segmentation ; Labeling ; Noise robustness ; Pixel ; Surface morphology ; Surface resistance</subject><ispartof>Proceedings of 1st International Conference on Image Processing, 1994, Vol.3, p.460-464 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/413764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/413764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hansen, M.W.</creatorcontrib><creatorcontrib>Higgins, W.E.</creatorcontrib><title>Watershed-driven relaxation labeling for image segmentation</title><title>Proceedings of 1st International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Introduces an image segmentation method referred to as watershed-driven relaxation labeling. The method is a hybrid segmentation process utilizing both watershed analysis and relaxation labeling. Initially, watershed analysis is used to subdivide an image into catchment basins, effectively clustering pixels together based on their spatial proximity and intensity homogeneity. Classification estimates in the form of probabilities are set for each of these catchment basins. Relaxation labeling is then used to iteratively refine and update the classifications of the catchment basins through propagating constraints and utilizing local information. The relaxation updating process is continued until a large majority of the catchment basins are unambiguously classified. The method provides fast, accurate segmentation results and exploits the individual strengths of watershed analysis and relaxation labeling. The robustness of the method is illustrated through comparisons to other popular segmentation techniques.&lt; &gt;</description><subject>Cancer</subject><subject>Computational efficiency</subject><subject>Gray-scale</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Noise robustness</subject><subject>Pixel</subject><subject>Surface morphology</subject><subject>Surface resistance</subject><isbn>0818669527</isbn><isbn>9780818669521</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT81KAzEYDIig1t7FU15g13z5D55kUbtQ0EOLx5I0X9bIdivZRfTtXaxzGWYGhhlCboDVAMzdtU37WoNzspYgjJZn5IpZsFo7xc0FWY7jB5sxaw7mkty_-QnL-I6xiiV_4UAL9v7bT_k40N4H7PPQ0XQsNB98h3TE7oDD9Jdfk_Pk-xGX_7wg26fHTbOq1i_PbfOwrjIYOVXJMgjeg2XRcB1RKVDJBS0s43Fv9oJ7xVNMkUdrQ-DGSA4qBmmtml0QC3J76s2IuPss85LyszvdE788sEYq</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Hansen, M.W.</creator><creator>Higgins, W.E.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Watershed-driven relaxation labeling for image segmentation</title><author>Hansen, M.W. ; Higgins, W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-f801baa180d726de5515f9b63802dc7c32a52fdfd2d88bb2774215db4885dfd13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Cancer</topic><topic>Computational efficiency</topic><topic>Gray-scale</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Noise robustness</topic><topic>Pixel</topic><topic>Surface morphology</topic><topic>Surface resistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hansen, M.W.</creatorcontrib><creatorcontrib>Higgins, W.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hansen, M.W.</au><au>Higgins, W.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Watershed-driven relaxation labeling for image segmentation</atitle><btitle>Proceedings of 1st International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1994</date><risdate>1994</risdate><volume>3</volume><spage>460</spage><epage>464 vol.3</epage><pages>460-464 vol.3</pages><isbn>0818669527</isbn><isbn>9780818669521</isbn><abstract>Introduces an image segmentation method referred to as watershed-driven relaxation labeling. The method is a hybrid segmentation process utilizing both watershed analysis and relaxation labeling. Initially, watershed analysis is used to subdivide an image into catchment basins, effectively clustering pixels together based on their spatial proximity and intensity homogeneity. Classification estimates in the form of probabilities are set for each of these catchment basins. Relaxation labeling is then used to iteratively refine and update the classifications of the catchment basins through propagating constraints and utilizing local information. The relaxation updating process is continued until a large majority of the catchment basins are unambiguously classified. The method provides fast, accurate segmentation results and exploits the individual strengths of watershed analysis and relaxation labeling. The robustness of the method is illustrated through comparisons to other popular segmentation techniques.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICIP.1994.413764</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818669527
ispartof Proceedings of 1st International Conference on Image Processing, 1994, Vol.3, p.460-464 vol.3
issn
language eng
recordid cdi_ieee_primary_413764
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer
Computational efficiency
Gray-scale
Image analysis
Image segmentation
Labeling
Noise robustness
Pixel
Surface morphology
Surface resistance
title Watershed-driven relaxation labeling for image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Watershed-driven%20relaxation%20labeling%20for%20image%20segmentation&rft.btitle=Proceedings%20of%201st%20International%20Conference%20on%20Image%20Processing&rft.au=Hansen,%20M.W.&rft.date=1994&rft.volume=3&rft.spage=460&rft.epage=464%20vol.3&rft.pages=460-464%20vol.3&rft.isbn=0818669527&rft.isbn_list=9780818669521&rft_id=info:doi/10.1109/ICIP.1994.413764&rft_dat=%3Cieee_6IE%3E413764%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=413764&rfr_iscdi=true