Registering retinal images using automatically selected control point pairs

Describes a method of registering retinal images automatically. Control points are automatically identified in each image from blood vessel segments extracted from both images. The location of the optic nerve is used check the spatial similarity of control point pairs. The control point pairs are ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hart, W.E., Goldbaum, M.H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580 vol.3
container_issue
container_start_page 576
container_title
container_volume 3
creator Hart, W.E.
Goldbaum, M.H.
description Describes a method of registering retinal images automatically. Control points are automatically identified in each image from blood vessel segments extracted from both images. The location of the optic nerve is used check the spatial similarity of control point pairs. The control point pairs are ranked with a similarity assessment that calculates a correlation of image intensity around each control point. Using a model of an idealized registration, the authors calculate the expected scaling factor between the images. Control point pairs that differ from this expected scaling factor are eliminated, with a bias against pairs with a low similarity assessment. Accurate registration is reported in 22 out of 23 image pairs. The registration error is related to the errors from the methods used to extract the vascular tree and to identify the location of the optic nerve.< >
doi_str_mv 10.1109/ICIP.1994.413740
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_413740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>413740</ieee_id><sourcerecordid>413740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7726a874b4ce078be9c7d9cdf9a7f17f5f14741da6567bae38c4411e317992e13</originalsourceid><addsrcrecordid>eNotj09LxDAUxAMiqOvexVO-QGtem-YlRyn-KS4oouclTV9LpNuWJHvYb29lncswv8Mww9gdiBxAmIembj5yMEbmEkqU4oLdCA1aKVMVeMW2Mf6IVWsuAK_Z2ycNPiYKfhp4oOQnO3J_sANFfox_0B7TfLDJOzuOJx5pJJeo426eUphHvsx-SnyxPsRbdtnbMdL23zfs-_npq37Ndu8vTf24y1yhdMoQC2U1ylY6EqhbMg4747reWOwB-6oHiRI6qyqFraVSOykBqAQ0piAoN-z-3OuJaL-EdW447c93y1_hxUw-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Registering retinal images using automatically selected control point pairs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hart, W.E. ; Goldbaum, M.H.</creator><creatorcontrib>Hart, W.E. ; Goldbaum, M.H.</creatorcontrib><description>Describes a method of registering retinal images automatically. Control points are automatically identified in each image from blood vessel segments extracted from both images. The location of the optic nerve is used check the spatial similarity of control point pairs. The control point pairs are ranked with a similarity assessment that calculates a correlation of image intensity around each control point. Using a model of an idealized registration, the authors calculate the expected scaling factor between the images. Control point pairs that differ from this expected scaling factor are eliminated, with a bias against pairs with a low similarity assessment. Accurate registration is reported in 22 out of 23 image pairs. The registration error is related to the errors from the methods used to extract the vascular tree and to identify the location of the optic nerve.&lt; &gt;</description><identifier>ISBN: 0818669527</identifier><identifier>ISBN: 9780818669521</identifier><identifier>DOI: 10.1109/ICIP.1994.413740</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Automatic control ; Biomedical imaging ; Blood vessels ; Computer science ; Image segmentation ; Lesions ; Optical control ; Optical filters ; Retina ; Testing</subject><ispartof>Proceedings of 1st International Conference on Image Processing, 1994, Vol.3, p.576-580 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-7726a874b4ce078be9c7d9cdf9a7f17f5f14741da6567bae38c4411e317992e13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/413740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/413740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hart, W.E.</creatorcontrib><creatorcontrib>Goldbaum, M.H.</creatorcontrib><title>Registering retinal images using automatically selected control point pairs</title><title>Proceedings of 1st International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>Describes a method of registering retinal images automatically. Control points are automatically identified in each image from blood vessel segments extracted from both images. The location of the optic nerve is used check the spatial similarity of control point pairs. The control point pairs are ranked with a similarity assessment that calculates a correlation of image intensity around each control point. Using a model of an idealized registration, the authors calculate the expected scaling factor between the images. Control point pairs that differ from this expected scaling factor are eliminated, with a bias against pairs with a low similarity assessment. Accurate registration is reported in 22 out of 23 image pairs. The registration error is related to the errors from the methods used to extract the vascular tree and to identify the location of the optic nerve.&lt; &gt;</description><subject>Automatic control</subject><subject>Biomedical imaging</subject><subject>Blood vessels</subject><subject>Computer science</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>Optical control</subject><subject>Optical filters</subject><subject>Retina</subject><subject>Testing</subject><isbn>0818669527</isbn><isbn>9780818669521</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1994</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj09LxDAUxAMiqOvexVO-QGtem-YlRyn-KS4oouclTV9LpNuWJHvYb29lncswv8Mww9gdiBxAmIembj5yMEbmEkqU4oLdCA1aKVMVeMW2Mf6IVWsuAK_Z2ycNPiYKfhp4oOQnO3J_sANFfox_0B7TfLDJOzuOJx5pJJeo426eUphHvsx-SnyxPsRbdtnbMdL23zfs-_npq37Ndu8vTf24y1yhdMoQC2U1ylY6EqhbMg4747reWOwB-6oHiRI6qyqFraVSOykBqAQ0piAoN-z-3OuJaL-EdW447c93y1_hxUw-</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Hart, W.E.</creator><creator>Goldbaum, M.H.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1994</creationdate><title>Registering retinal images using automatically selected control point pairs</title><author>Hart, W.E. ; Goldbaum, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7726a874b4ce078be9c7d9cdf9a7f17f5f14741da6567bae38c4411e317992e13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Automatic control</topic><topic>Biomedical imaging</topic><topic>Blood vessels</topic><topic>Computer science</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>Optical control</topic><topic>Optical filters</topic><topic>Retina</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Hart, W.E.</creatorcontrib><creatorcontrib>Goldbaum, M.H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hart, W.E.</au><au>Goldbaum, M.H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Registering retinal images using automatically selected control point pairs</atitle><btitle>Proceedings of 1st International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>1994</date><risdate>1994</risdate><volume>3</volume><spage>576</spage><epage>580 vol.3</epage><pages>576-580 vol.3</pages><isbn>0818669527</isbn><isbn>9780818669521</isbn><abstract>Describes a method of registering retinal images automatically. Control points are automatically identified in each image from blood vessel segments extracted from both images. The location of the optic nerve is used check the spatial similarity of control point pairs. The control point pairs are ranked with a similarity assessment that calculates a correlation of image intensity around each control point. Using a model of an idealized registration, the authors calculate the expected scaling factor between the images. Control point pairs that differ from this expected scaling factor are eliminated, with a bias against pairs with a low similarity assessment. Accurate registration is reported in 22 out of 23 image pairs. The registration error is related to the errors from the methods used to extract the vascular tree and to identify the location of the optic nerve.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICIP.1994.413740</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818669527
ispartof Proceedings of 1st International Conference on Image Processing, 1994, Vol.3, p.576-580 vol.3
issn
language eng
recordid cdi_ieee_primary_413740
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic control
Biomedical imaging
Blood vessels
Computer science
Image segmentation
Lesions
Optical control
Optical filters
Retina
Testing
title Registering retinal images using automatically selected control point pairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Registering%20retinal%20images%20using%20automatically%20selected%20control%20point%20pairs&rft.btitle=Proceedings%20of%201st%20International%20Conference%20on%20Image%20Processing&rft.au=Hart,%20W.E.&rft.date=1994&rft.volume=3&rft.spage=576&rft.epage=580%20vol.3&rft.pages=576-580%20vol.3&rft.isbn=0818669527&rft.isbn_list=9780818669521&rft_id=info:doi/10.1109/ICIP.1994.413740&rft_dat=%3Cieee_6IE%3E413740%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=413740&rfr_iscdi=true