Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter

This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huaiqi Kang, Caicheng Shi, Peikun He, Baojun Zhao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 3
creator Huaiqi Kang
Caicheng Shi
Peikun He
Baojun Zhao
description This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the network parameters to obtain robust performance. The winner neuron updating strategy is also employed to reduce the computation load for online application. Experimental results show the proposed algorithm can achieve smaller approximation error and more compact network structure than several other typical sequential learning algorithms
doi_str_mv 10.1109/ICOSP.2006.345924
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4129219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4129219</ieee_id><sourcerecordid>4129219</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6f915892db409b56866070e2f0f878068eceb35d19ab0167a6faad844c81a763</originalsourceid><addsrcrecordid>eNo1j9tKw0AYhFe0YK19APFmXyDx30P-3b2sxWqhULG5tmzSTV1Nk7rZgL698QQDw1x8wwwhVwxSxsDcLOfrzWPKATAVMjNcnpCpURoGCaOE0qfk4j-gOCNjzlAmGedsRMaAieHKcHNOpl33CgCCaY0Cx-T5qS36LtKNe-9dE72t6crZ0PhmT2f1vg0-vhxo1Qa66Jsy-rahs-MxtB_-YH_Sre0cHXwTQzswebDl2ze88HV04ZKMKlt3bvrnE5Iv7vL5Q7Ja3y_ns1XimcpigpVhmTZ8V0gwRYYaERQ4XkGlh1OoXekKke2YsQUwVBYra3daylIzq1BMyPVvrXfObY9hGBc-t5Jxw5kRX1C2WN4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huaiqi Kang ; Caicheng Shi ; Peikun He ; Baojun Zhao</creator><creatorcontrib>Huaiqi Kang ; Caicheng Shi ; Peikun He ; Baojun Zhao</creatorcontrib><description>This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the network parameters to obtain robust performance. The winner neuron updating strategy is also employed to reduce the computation load for online application. Experimental results show the proposed algorithm can achieve smaller approximation error and more compact network structure than several other typical sequential learning algorithms</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 0780397363</identifier><identifier>ISBN: 9780780397361</identifier><identifier>EISBN: 9780780397378</identifier><identifier>EISBN: 0780397371</identifier><identifier>DOI: 10.1109/ICOSP.2006.345924</identifier><identifier>LCCN: 06-927929</identifier><language>eng</language><subject>Approximation algorithms ; Approximation error ; Covariance matrix ; Fading ; Filters ; Function approximation ; Neurons ; Nonlinear systems ; Radio access networks ; Robustness</subject><ispartof>2006 8th international Conference on Signal Processing, 2006, Vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4129219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4129219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huaiqi Kang</creatorcontrib><creatorcontrib>Caicheng Shi</creatorcontrib><creatorcontrib>Peikun He</creatorcontrib><creatorcontrib>Baojun Zhao</creatorcontrib><title>Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter</title><title>2006 8th international Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the network parameters to obtain robust performance. The winner neuron updating strategy is also employed to reduce the computation load for online application. Experimental results show the proposed algorithm can achieve smaller approximation error and more compact network structure than several other typical sequential learning algorithms</description><subject>Approximation algorithms</subject><subject>Approximation error</subject><subject>Covariance matrix</subject><subject>Fading</subject><subject>Filters</subject><subject>Function approximation</subject><subject>Neurons</subject><subject>Nonlinear systems</subject><subject>Radio access networks</subject><subject>Robustness</subject><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><isbn>9780780397378</isbn><isbn>0780397371</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j9tKw0AYhFe0YK19APFmXyDx30P-3b2sxWqhULG5tmzSTV1Nk7rZgL698QQDw1x8wwwhVwxSxsDcLOfrzWPKATAVMjNcnpCpURoGCaOE0qfk4j-gOCNjzlAmGedsRMaAieHKcHNOpl33CgCCaY0Cx-T5qS36LtKNe-9dE72t6crZ0PhmT2f1vg0-vhxo1Qa66Jsy-rahs-MxtB_-YH_Sre0cHXwTQzswebDl2ze88HV04ZKMKlt3bvrnE5Iv7vL5Q7Ja3y_ns1XimcpigpVhmTZ8V0gwRYYaERQ4XkGlh1OoXekKke2YsQUwVBYra3daylIzq1BMyPVvrXfObY9hGBc-t5Jxw5kRX1C2WN4</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Huaiqi Kang</creator><creator>Caicheng Shi</creator><creator>Peikun He</creator><creator>Baojun Zhao</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter</title><author>Huaiqi Kang ; Caicheng Shi ; Peikun He ; Baojun Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6f915892db409b56866070e2f0f878068eceb35d19ab0167a6faad844c81a763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation algorithms</topic><topic>Approximation error</topic><topic>Covariance matrix</topic><topic>Fading</topic><topic>Filters</topic><topic>Function approximation</topic><topic>Neurons</topic><topic>Nonlinear systems</topic><topic>Radio access networks</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Huaiqi Kang</creatorcontrib><creatorcontrib>Caicheng Shi</creatorcontrib><creatorcontrib>Peikun He</creatorcontrib><creatorcontrib>Baojun Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huaiqi Kang</au><au>Caicheng Shi</au><au>Peikun He</au><au>Baojun Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter</atitle><btitle>2006 8th international Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><eisbn>9780780397378</eisbn><eisbn>0780397371</eisbn><abstract>This paper addresses the problem that network whose parameters are updated using EKF can not obtain robust performance if the system state saltates when EKF reach stable state. Strong tracking filter which introduces suboptimal fading factor matrix to overcome the problem is utilized to adjust the network parameters to obtain robust performance. The winner neuron updating strategy is also employed to reduce the computation load for online application. Experimental results show the proposed algorithm can achieve smaller approximation error and more compact network structure than several other typical sequential learning algorithms</abstract><doi>10.1109/ICOSP.2006.345924</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2006 8th international Conference on Signal Processing, 2006, Vol.3
issn 2164-5221
language eng
recordid cdi_ieee_primary_4129219
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Approximation error
Covariance matrix
Fading
Filters
Function approximation
Neurons
Nonlinear systems
Radio access networks
Robustness
title Robust Sequential Learning Algorithm for Function Approximation Base on Strong Tracking Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Sequential%20Learning%20Algorithm%20for%20Function%20Approximation%20Base%20on%20Strong%20Tracking%20Filter&rft.btitle=2006%208th%20international%20Conference%20on%20Signal%20Processing&rft.au=Huaiqi%20Kang&rft.date=2006&rft.volume=3&rft.issn=2164-5221&rft.isbn=0780397363&rft.isbn_list=9780780397361&rft_id=info:doi/10.1109/ICOSP.2006.345924&rft_dat=%3Cieee_6IE%3E4129219%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780397378&rft.eisbn_list=0780397371&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4129219&rfr_iscdi=true