An Improved Adaptive Wiener Filtering Algorithm
In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wie...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | 1 |
creator | Zhibo Lu Guoen Hu Xin Wang Lushan Yang |
description | In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions |
doi_str_mv | 10.1109/ICOSP.2006.344517 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4128853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4128853</ieee_id><sourcerecordid>4128853</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5af38523889f2e9b34d6a1121a855282eec5753f6ddd865ffea9fa5f861531e3</originalsourceid><addsrcrecordid>eNo1jNtKw0AQQFe0YKz9APElP5B0ZyezO_sYgtVAoYKKj2U1s3UlvZCGgn-voMKBw3k5St2ALgG0n7fN6umxNFrbEquKwJ2pmXesf0Dv0PG5uvoPixcqM2CrgoyBicq0Lbxx3vhLNTseP7XWCMwWbabm9S5vt4dhf5Iur7twGNNJ8tckOxnyRepHGdJuk9f9Zj-k8WN7rSYx9EeZ_XmqXhZ3z81DsVzdt029LBI4GotIISKTQWYfjfg3rDobAAwEJjJsRN7JEUbbdR1bilGCj4EiWyAEwam6_f0mEVkfhrQNw9e6AsNMiN8dtEfB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved Adaptive Wiener Filtering Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</creator><creatorcontrib>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</creatorcontrib><description>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 0780397363</identifier><identifier>ISBN: 9780780397361</identifier><identifier>EISBN: 9780780397378</identifier><identifier>EISBN: 0780397371</identifier><identifier>DOI: 10.1109/ICOSP.2006.344517</identifier><identifier>LCCN: 06-927929</identifier><language>eng</language><subject>Anisotropic magnetoresistance ; Diffusion processes ; Filtering algorithms ; Image denoising ; Iterative algorithms ; Nonlinear equations ; Shape ; Smoothing methods ; Tensile stress ; Wiener filter</subject><ispartof>2006 8th international Conference on Signal Processing, 2006, Vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4128853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4128853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhibo Lu</creatorcontrib><creatorcontrib>Guoen Hu</creatorcontrib><creatorcontrib>Xin Wang</creatorcontrib><creatorcontrib>Lushan Yang</creatorcontrib><title>An Improved Adaptive Wiener Filtering Algorithm</title><title>2006 8th international Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</description><subject>Anisotropic magnetoresistance</subject><subject>Diffusion processes</subject><subject>Filtering algorithms</subject><subject>Image denoising</subject><subject>Iterative algorithms</subject><subject>Nonlinear equations</subject><subject>Shape</subject><subject>Smoothing methods</subject><subject>Tensile stress</subject><subject>Wiener filter</subject><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><isbn>9780780397378</isbn><isbn>0780397371</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jNtKw0AQQFe0YKz9APElP5B0ZyezO_sYgtVAoYKKj2U1s3UlvZCGgn-voMKBw3k5St2ALgG0n7fN6umxNFrbEquKwJ2pmXesf0Dv0PG5uvoPixcqM2CrgoyBicq0Lbxx3vhLNTseP7XWCMwWbabm9S5vt4dhf5Iur7twGNNJ8tckOxnyRepHGdJuk9f9Zj-k8WN7rSYx9EeZ_XmqXhZ3z81DsVzdt029LBI4GotIISKTQWYfjfg3rDobAAwEJjJsRN7JEUbbdR1bilGCj4EiWyAEwam6_f0mEVkfhrQNw9e6AsNMiN8dtEfB</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zhibo Lu</creator><creator>Guoen Hu</creator><creator>Xin Wang</creator><creator>Lushan Yang</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>An Improved Adaptive Wiener Filtering Algorithm</title><author>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5af38523889f2e9b34d6a1121a855282eec5753f6ddd865ffea9fa5f861531e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Diffusion processes</topic><topic>Filtering algorithms</topic><topic>Image denoising</topic><topic>Iterative algorithms</topic><topic>Nonlinear equations</topic><topic>Shape</topic><topic>Smoothing methods</topic><topic>Tensile stress</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhibo Lu</creatorcontrib><creatorcontrib>Guoen Hu</creatorcontrib><creatorcontrib>Xin Wang</creatorcontrib><creatorcontrib>Lushan Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhibo Lu</au><au>Guoen Hu</au><au>Xin Wang</au><au>Lushan Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved Adaptive Wiener Filtering Algorithm</atitle><btitle>2006 8th international Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2006</date><risdate>2006</risdate><volume>1</volume><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><eisbn>9780780397378</eisbn><eisbn>0780397371</eisbn><abstract>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</abstract><doi>10.1109/ICOSP.2006.344517</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-5221 |
ispartof | 2006 8th international Conference on Signal Processing, 2006, Vol.1 |
issn | 2164-5221 |
language | eng |
recordid | cdi_ieee_primary_4128853 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Anisotropic magnetoresistance Diffusion processes Filtering algorithms Image denoising Iterative algorithms Nonlinear equations Shape Smoothing methods Tensile stress Wiener filter |
title | An Improved Adaptive Wiener Filtering Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20Adaptive%20Wiener%20Filtering%20Algorithm&rft.btitle=2006%208th%20international%20Conference%20on%20Signal%20Processing&rft.au=Zhibo%20Lu&rft.date=2006&rft.volume=1&rft.issn=2164-5221&rft.isbn=0780397363&rft.isbn_list=9780780397361&rft_id=info:doi/10.1109/ICOSP.2006.344517&rft_dat=%3Cieee_6IE%3E4128853%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780397378&rft.eisbn_list=0780397371&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4128853&rfr_iscdi=true |