An Improved Adaptive Wiener Filtering Algorithm

In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhibo Lu, Guoen Hu, Xin Wang, Lushan Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 1
creator Zhibo Lu
Guoen Hu
Xin Wang
Lushan Yang
description In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions
doi_str_mv 10.1109/ICOSP.2006.344517
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4128853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4128853</ieee_id><sourcerecordid>4128853</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f5af38523889f2e9b34d6a1121a855282eec5753f6ddd865ffea9fa5f861531e3</originalsourceid><addsrcrecordid>eNo1jNtKw0AQQFe0YKz9APElP5B0ZyezO_sYgtVAoYKKj2U1s3UlvZCGgn-voMKBw3k5St2ALgG0n7fN6umxNFrbEquKwJ2pmXesf0Dv0PG5uvoPixcqM2CrgoyBicq0Lbxx3vhLNTseP7XWCMwWbabm9S5vt4dhf5Iur7twGNNJ8tckOxnyRepHGdJuk9f9Zj-k8WN7rSYx9EeZ_XmqXhZ3z81DsVzdt029LBI4GotIISKTQWYfjfg3rDobAAwEJjJsRN7JEUbbdR1bilGCj4EiWyAEwam6_f0mEVkfhrQNw9e6AsNMiN8dtEfB</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Improved Adaptive Wiener Filtering Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</creator><creatorcontrib>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</creatorcontrib><description>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</description><identifier>ISSN: 2164-5221</identifier><identifier>ISBN: 0780397363</identifier><identifier>ISBN: 9780780397361</identifier><identifier>EISBN: 9780780397378</identifier><identifier>EISBN: 0780397371</identifier><identifier>DOI: 10.1109/ICOSP.2006.344517</identifier><identifier>LCCN: 06-927929</identifier><language>eng</language><subject>Anisotropic magnetoresistance ; Diffusion processes ; Filtering algorithms ; Image denoising ; Iterative algorithms ; Nonlinear equations ; Shape ; Smoothing methods ; Tensile stress ; Wiener filter</subject><ispartof>2006 8th international Conference on Signal Processing, 2006, Vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4128853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4128853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhibo Lu</creatorcontrib><creatorcontrib>Guoen Hu</creatorcontrib><creatorcontrib>Xin Wang</creatorcontrib><creatorcontrib>Lushan Yang</creatorcontrib><title>An Improved Adaptive Wiener Filtering Algorithm</title><title>2006 8th international Conference on Signal Processing</title><addtitle>ICOSP</addtitle><description>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</description><subject>Anisotropic magnetoresistance</subject><subject>Diffusion processes</subject><subject>Filtering algorithms</subject><subject>Image denoising</subject><subject>Iterative algorithms</subject><subject>Nonlinear equations</subject><subject>Shape</subject><subject>Smoothing methods</subject><subject>Tensile stress</subject><subject>Wiener filter</subject><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><isbn>9780780397378</isbn><isbn>0780397371</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jNtKw0AQQFe0YKz9APElP5B0ZyezO_sYgtVAoYKKj2U1s3UlvZCGgn-voMKBw3k5St2ALgG0n7fN6umxNFrbEquKwJ2pmXesf0Dv0PG5uvoPixcqM2CrgoyBicq0Lbxx3vhLNTseP7XWCMwWbabm9S5vt4dhf5Iur7twGNNJ8tckOxnyRepHGdJuk9f9Zj-k8WN7rSYx9EeZ_XmqXhZ3z81DsVzdt029LBI4GotIISKTQWYfjfg3rDobAAwEJjJsRN7JEUbbdR1bilGCj4EiWyAEwam6_f0mEVkfhrQNw9e6AsNMiN8dtEfB</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zhibo Lu</creator><creator>Guoen Hu</creator><creator>Xin Wang</creator><creator>Lushan Yang</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>An Improved Adaptive Wiener Filtering Algorithm</title><author>Zhibo Lu ; Guoen Hu ; Xin Wang ; Lushan Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f5af38523889f2e9b34d6a1121a855282eec5753f6ddd865ffea9fa5f861531e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Diffusion processes</topic><topic>Filtering algorithms</topic><topic>Image denoising</topic><topic>Iterative algorithms</topic><topic>Nonlinear equations</topic><topic>Shape</topic><topic>Smoothing methods</topic><topic>Tensile stress</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhibo Lu</creatorcontrib><creatorcontrib>Guoen Hu</creatorcontrib><creatorcontrib>Xin Wang</creatorcontrib><creatorcontrib>Lushan Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhibo Lu</au><au>Guoen Hu</au><au>Xin Wang</au><au>Lushan Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Improved Adaptive Wiener Filtering Algorithm</atitle><btitle>2006 8th international Conference on Signal Processing</btitle><stitle>ICOSP</stitle><date>2006</date><risdate>2006</risdate><volume>1</volume><issn>2164-5221</issn><isbn>0780397363</isbn><isbn>9780780397361</isbn><eisbn>9780780397378</eisbn><eisbn>0780397371</eisbn><abstract>In this paper, an anisotropic image denoising algorithm is proposed by combining a nonlinear version of the local structure tensor together with Wiener filtering, where the shape and size of smoothing windows are determined by an iteratively updated nonlinear diffusion process while those in the Wiener filter are fixed. In this way, the method is data-adaptive and helps to better preserve boundaries and reduce structure delocalization. An additive operator splitting scheme is applied to solving nonlinear diffusion equation to improve computational efficiency. In simulations, the approach exhibits better performance and significant peak signal-to-noise ratio improvement than Wiener filtering and some wavelet-based filtering schemes, particularly in edge regions</abstract><doi>10.1109/ICOSP.2006.344517</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2164-5221
ispartof 2006 8th international Conference on Signal Processing, 2006, Vol.1
issn 2164-5221
language eng
recordid cdi_ieee_primary_4128853
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anisotropic magnetoresistance
Diffusion processes
Filtering algorithms
Image denoising
Iterative algorithms
Nonlinear equations
Shape
Smoothing methods
Tensile stress
Wiener filter
title An Improved Adaptive Wiener Filtering Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Improved%20Adaptive%20Wiener%20Filtering%20Algorithm&rft.btitle=2006%208th%20international%20Conference%20on%20Signal%20Processing&rft.au=Zhibo%20Lu&rft.date=2006&rft.volume=1&rft.issn=2164-5221&rft.isbn=0780397363&rft.isbn_list=9780780397361&rft_id=info:doi/10.1109/ICOSP.2006.344517&rft_dat=%3Cieee_6IE%3E4128853%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780780397378&rft.eisbn_list=0780397371&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4128853&rfr_iscdi=true