Application of Undersampled Hilbert Transform to Complex Modulated Signals
In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | |
container_start_page | 879 |
container_title | |
container_volume | |
creator | Yaoying Lin Hans, V. |
description | In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method |
doi_str_mv | 10.1109/IMTC.2006.328238 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4124459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4124459</ieee_id><sourcerecordid>4124459</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-4f7b0ce2fc213c273b8da454c5f8428ecdaf8f9e610e82c40b27bc38bbe237383</originalsourceid><addsrcrecordid>eNotjF1LwzAYhSMquM3dC97kD7S-eZM06eUouk02vLC7HkmaSKRftBX031uZV4eHc55DyAODlDHIn_bHskgRIEs5auT6iixBaeA5zwCuyTqf4cIyxxuymB2WSNTsjizH8RNmUyi1IK-bvq-jM1PsWtoFemorP4ym6Wtf0V2srR8mWg6mHUM3NHTqaNH9ld_02FVftZnm2Xv8aE093pPbMIdf_-eKnF6ey2KXHN62-2JzSCIDOSUiKAvOY3DIuEPFra6MkMLJoAVq7yoTdMh9xsBrdAIsKuu4ttYjV1zzFXm8_Ebv_bkfYmOGn7NgKITM-S_F00_G</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaoying Lin ; Hans, V.</creator><creatorcontrib>Yaoying Lin ; Hans, V.</creatorcontrib><description>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 9780780393592</identifier><identifier>ISBN: 0780393597</identifier><identifier>EISBN: 0780393600</identifier><identifier>EISBN: 9780780393608</identifier><identifier>DOI: 10.1109/IMTC.2006.328238</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude modulation ; complex modulated signals ; Demodulation ; Filtering ; Frequency ; Hilbert Transform ; Image reconstruction ; Instrumentation and measurement ; Phase modulation ; Sampling methods ; Signal processing ; Streaming media</subject><ispartof>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 2006, p.879-882</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4124459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4124459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><title>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings</title><addtitle>IMTC</addtitle><description>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</description><subject>Amplitude modulation</subject><subject>complex modulated signals</subject><subject>Demodulation</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Hilbert Transform</subject><subject>Image reconstruction</subject><subject>Instrumentation and measurement</subject><subject>Phase modulation</subject><subject>Sampling methods</subject><subject>Signal processing</subject><subject>Streaming media</subject><issn>1091-5281</issn><isbn>9780780393592</isbn><isbn>0780393597</isbn><isbn>0780393600</isbn><isbn>9780780393608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYhSMquM3dC97kD7S-eZM06eUouk02vLC7HkmaSKRftBX031uZV4eHc55DyAODlDHIn_bHskgRIEs5auT6iixBaeA5zwCuyTqf4cIyxxuymB2WSNTsjizH8RNmUyi1IK-bvq-jM1PsWtoFemorP4ym6Wtf0V2srR8mWg6mHUM3NHTqaNH9ld_02FVftZnm2Xv8aE093pPbMIdf_-eKnF6ey2KXHN62-2JzSCIDOSUiKAvOY3DIuEPFra6MkMLJoAVq7yoTdMh9xsBrdAIsKuu4ttYjV1zzFXm8_Ebv_bkfYmOGn7NgKITM-S_F00_G</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Yaoying Lin</creator><creator>Hans, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200604</creationdate><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><author>Yaoying Lin ; Hans, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-4f7b0ce2fc213c273b8da454c5f8428ecdaf8f9e610e82c40b27bc38bbe237383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude modulation</topic><topic>complex modulated signals</topic><topic>Demodulation</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Hilbert Transform</topic><topic>Image reconstruction</topic><topic>Instrumentation and measurement</topic><topic>Phase modulation</topic><topic>Sampling methods</topic><topic>Signal processing</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaoying Lin</au><au>Hans, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Undersampled Hilbert Transform to Complex Modulated Signals</atitle><btitle>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings</btitle><stitle>IMTC</stitle><date>2006-04</date><risdate>2006</risdate><spage>879</spage><epage>882</epage><pages>879-882</pages><issn>1091-5281</issn><isbn>9780780393592</isbn><isbn>0780393597</isbn><eisbn>0780393600</eisbn><eisbn>9780780393608</eisbn><abstract>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</abstract><pub>IEEE</pub><doi>10.1109/IMTC.2006.328238</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1091-5281 |
ispartof | 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 2006, p.879-882 |
issn | 1091-5281 |
language | eng |
recordid | cdi_ieee_primary_4124459 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Amplitude modulation complex modulated signals Demodulation Filtering Frequency Hilbert Transform Image reconstruction Instrumentation and measurement Phase modulation Sampling methods Signal processing Streaming media |
title | Application of Undersampled Hilbert Transform to Complex Modulated Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Undersampled%20Hilbert%20Transform%20to%20Complex%20Modulated%20Signals&rft.btitle=2006%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference%20Proceedings&rft.au=Yaoying%20Lin&rft.date=2006-04&rft.spage=879&rft.epage=882&rft.pages=879-882&rft.issn=1091-5281&rft.isbn=9780780393592&rft.isbn_list=0780393597&rft_id=info:doi/10.1109/IMTC.2006.328238&rft_dat=%3Cieee_6IE%3E4124459%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0780393600&rft.eisbn_list=9780780393608&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4124459&rfr_iscdi=true |