Application of Undersampled Hilbert Transform to Complex Modulated Signals

In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yaoying Lin, Hans, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue
container_start_page 879
container_title
container_volume
creator Yaoying Lin
Hans, V.
description In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method
doi_str_mv 10.1109/IMTC.2006.328238
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4124459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4124459</ieee_id><sourcerecordid>4124459</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-4f7b0ce2fc213c273b8da454c5f8428ecdaf8f9e610e82c40b27bc38bbe237383</originalsourceid><addsrcrecordid>eNotjF1LwzAYhSMquM3dC97kD7S-eZM06eUouk02vLC7HkmaSKRftBX031uZV4eHc55DyAODlDHIn_bHskgRIEs5auT6iixBaeA5zwCuyTqf4cIyxxuymB2WSNTsjizH8RNmUyi1IK-bvq-jM1PsWtoFemorP4ym6Wtf0V2srR8mWg6mHUM3NHTqaNH9ld_02FVftZnm2Xv8aE093pPbMIdf_-eKnF6ey2KXHN62-2JzSCIDOSUiKAvOY3DIuEPFra6MkMLJoAVq7yoTdMh9xsBrdAIsKuu4ttYjV1zzFXm8_Ebv_bkfYmOGn7NgKITM-S_F00_G</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yaoying Lin ; Hans, V.</creator><creatorcontrib>Yaoying Lin ; Hans, V.</creatorcontrib><description>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 9780780393592</identifier><identifier>ISBN: 0780393597</identifier><identifier>EISBN: 0780393600</identifier><identifier>EISBN: 9780780393608</identifier><identifier>DOI: 10.1109/IMTC.2006.328238</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplitude modulation ; complex modulated signals ; Demodulation ; Filtering ; Frequency ; Hilbert Transform ; Image reconstruction ; Instrumentation and measurement ; Phase modulation ; Sampling methods ; Signal processing ; Streaming media</subject><ispartof>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 2006, p.879-882</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4124459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4124459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><title>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings</title><addtitle>IMTC</addtitle><description>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</description><subject>Amplitude modulation</subject><subject>complex modulated signals</subject><subject>Demodulation</subject><subject>Filtering</subject><subject>Frequency</subject><subject>Hilbert Transform</subject><subject>Image reconstruction</subject><subject>Instrumentation and measurement</subject><subject>Phase modulation</subject><subject>Sampling methods</subject><subject>Signal processing</subject><subject>Streaming media</subject><issn>1091-5281</issn><isbn>9780780393592</isbn><isbn>0780393597</isbn><isbn>0780393600</isbn><isbn>9780780393608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjF1LwzAYhSMquM3dC97kD7S-eZM06eUouk02vLC7HkmaSKRftBX031uZV4eHc55DyAODlDHIn_bHskgRIEs5auT6iixBaeA5zwCuyTqf4cIyxxuymB2WSNTsjizH8RNmUyi1IK-bvq-jM1PsWtoFemorP4ym6Wtf0V2srR8mWg6mHUM3NHTqaNH9ld_02FVftZnm2Xv8aE093pPbMIdf_-eKnF6ey2KXHN62-2JzSCIDOSUiKAvOY3DIuEPFra6MkMLJoAVq7yoTdMh9xsBrdAIsKuu4ttYjV1zzFXm8_Ebv_bkfYmOGn7NgKITM-S_F00_G</recordid><startdate>200604</startdate><enddate>200604</enddate><creator>Yaoying Lin</creator><creator>Hans, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200604</creationdate><title>Application of Undersampled Hilbert Transform to Complex Modulated Signals</title><author>Yaoying Lin ; Hans, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-4f7b0ce2fc213c273b8da454c5f8428ecdaf8f9e610e82c40b27bc38bbe237383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amplitude modulation</topic><topic>complex modulated signals</topic><topic>Demodulation</topic><topic>Filtering</topic><topic>Frequency</topic><topic>Hilbert Transform</topic><topic>Image reconstruction</topic><topic>Instrumentation and measurement</topic><topic>Phase modulation</topic><topic>Sampling methods</topic><topic>Signal processing</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Yaoying Lin</creatorcontrib><creatorcontrib>Hans, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yaoying Lin</au><au>Hans, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Undersampled Hilbert Transform to Complex Modulated Signals</atitle><btitle>2006 IEEE Instrumentation and Measurement Technology Conference Proceedings</btitle><stitle>IMTC</stitle><date>2006-04</date><risdate>2006</risdate><spage>879</spage><epage>882</epage><pages>879-882</pages><issn>1091-5281</issn><isbn>9780780393592</isbn><isbn>0780393597</isbn><eisbn>0780393600</eisbn><eisbn>9780780393608</eisbn><abstract>In technical processes signals are very often complex modulated. A typical example is an ultrasonic wave passing a streaming fluid perpendicularly which is superposed by stochastically distributed turbulences. The demodulation of the signal can be carried out by digital undersampling to separate the narrow sidebands to the carrier frequency in the frequency domain. The complex signal can be divided into real and imaginary parts by application of Hilbert transform. The imaginary part of the signal can not be obtained directly through the measurement but needs a transform from the measured real part. This procedure is called Hilbert transform. Based on the normal digital Hilbert transform, an undersampled Hilbert transform is presented in this paper as well as its results and conclusions which are drawn from the method</abstract><pub>IEEE</pub><doi>10.1109/IMTC.2006.328238</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1091-5281
ispartof 2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, 2006, p.879-882
issn 1091-5281
language eng
recordid cdi_ieee_primary_4124459
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Amplitude modulation
complex modulated signals
Demodulation
Filtering
Frequency
Hilbert Transform
Image reconstruction
Instrumentation and measurement
Phase modulation
Sampling methods
Signal processing
Streaming media
title Application of Undersampled Hilbert Transform to Complex Modulated Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Undersampled%20Hilbert%20Transform%20to%20Complex%20Modulated%20Signals&rft.btitle=2006%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference%20Proceedings&rft.au=Yaoying%20Lin&rft.date=2006-04&rft.spage=879&rft.epage=882&rft.pages=879-882&rft.issn=1091-5281&rft.isbn=9780780393592&rft.isbn_list=0780393597&rft_id=info:doi/10.1109/IMTC.2006.328238&rft_dat=%3Cieee_6IE%3E4124459%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0780393600&rft.eisbn_list=9780780393608&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4124459&rfr_iscdi=true