Detecting Botnets with Tight Command and Control
Systems are attempting to detect botnets by examining traffic content for IRC commands or by setting up honeynets. Our approach for detecting botnets is to examine flow characteristics such as bandwidth, duration, and packet timing looking for evidence of botnet command and control activity. We have...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | |
container_start_page | 195 |
container_title | |
container_volume | |
creator | Strayer, W.T. Walsh, R. Livadas, C. Lapsley, D. |
description | Systems are attempting to detect botnets by examining traffic content for IRC commands or by setting up honeynets. Our approach for detecting botnets is to examine flow characteristics such as bandwidth, duration, and packet timing looking for evidence of botnet command and control activity. We have constructed an architecture that first eliminates traffic that is unlikely to be a part of a botnet, classifies the remaining traffic into a group that is likely to be part of a botnet, then correlates the likely traffic to find common communications patterns that would suggest the activity of a botnet. Our results show that botnet evidence can be extracted from a traffic trace containing almost 9 million flows |
doi_str_mv | 10.1109/LCN.2006.322100 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4116547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4116547</ieee_id><sourcerecordid>4116547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-a52e779c7777afb4cc78a13dcd346167208f5fc0c56d7bdd98440ea3585199b23</originalsourceid><addsrcrecordid>eNo1jktLxDAUhSMqOI5du3DTP9B6b3LzWmp9QtHNuB7SJJ2pTFtpA-K_t6J-cDiczeFj7BKhRAR7XVcvJQdQpeAcAY7YORInAkIrjllmtfnfRp2wFWjiBQoQZyyb53dYsIQk-YrBXUzRp27Y5bdjGmKa888u7fNNt9unvBr73g0h_0k1DmkaDxfstHWHOWZ_vWZvD_eb6qmoXx-fq5u68ItSKpzkUWvr9YJrG_JeG4ci-CBIodIcTCtbD16qoJsQrFl0oxPSSLS24WLNrn5_uxjj9mPqejd9bQlRSdLiG3nURP8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Botnets with Tight Command and Control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Strayer, W.T. ; Walsh, R. ; Livadas, C. ; Lapsley, D.</creator><creatorcontrib>Strayer, W.T. ; Walsh, R. ; Livadas, C. ; Lapsley, D.</creatorcontrib><description>Systems are attempting to detect botnets by examining traffic content for IRC commands or by setting up honeynets. Our approach for detecting botnets is to examine flow characteristics such as bandwidth, duration, and packet timing looking for evidence of botnet command and control activity. We have constructed an architecture that first eliminates traffic that is unlikely to be a part of a botnet, classifies the remaining traffic into a group that is likely to be part of a botnet, then correlates the likely traffic to find common communications patterns that would suggest the activity of a botnet. Our results show that botnet evidence can be extracted from a traffic trace containing almost 9 million flows</description><identifier>ISSN: 0742-1303</identifier><identifier>ISBN: 9781424404186</identifier><identifier>ISBN: 1424404185</identifier><identifier>EISBN: 1424404193</identifier><identifier>EISBN: 9781424404193</identifier><identifier>DOI: 10.1109/LCN.2006.322100</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Command and control systems ; Communication system traffic control ; Computer networks ; Control systems ; Government ; Hospitals ; Information security ; Internet ; Timing</subject><ispartof>Proceedings. 2006 31st IEEE Conference on Local Computer Networks, 2006, p.195-202</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-a52e779c7777afb4cc78a13dcd346167208f5fc0c56d7bdd98440ea3585199b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4116547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4116547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Strayer, W.T.</creatorcontrib><creatorcontrib>Walsh, R.</creatorcontrib><creatorcontrib>Livadas, C.</creatorcontrib><creatorcontrib>Lapsley, D.</creatorcontrib><title>Detecting Botnets with Tight Command and Control</title><title>Proceedings. 2006 31st IEEE Conference on Local Computer Networks</title><addtitle>LCN</addtitle><description>Systems are attempting to detect botnets by examining traffic content for IRC commands or by setting up honeynets. Our approach for detecting botnets is to examine flow characteristics such as bandwidth, duration, and packet timing looking for evidence of botnet command and control activity. We have constructed an architecture that first eliminates traffic that is unlikely to be a part of a botnet, classifies the remaining traffic into a group that is likely to be part of a botnet, then correlates the likely traffic to find common communications patterns that would suggest the activity of a botnet. Our results show that botnet evidence can be extracted from a traffic trace containing almost 9 million flows</description><subject>Bandwidth</subject><subject>Command and control systems</subject><subject>Communication system traffic control</subject><subject>Computer networks</subject><subject>Control systems</subject><subject>Government</subject><subject>Hospitals</subject><subject>Information security</subject><subject>Internet</subject><subject>Timing</subject><issn>0742-1303</issn><isbn>9781424404186</isbn><isbn>1424404185</isbn><isbn>1424404193</isbn><isbn>9781424404193</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1jktLxDAUhSMqOI5du3DTP9B6b3LzWmp9QtHNuB7SJJ2pTFtpA-K_t6J-cDiczeFj7BKhRAR7XVcvJQdQpeAcAY7YORInAkIrjllmtfnfRp2wFWjiBQoQZyyb53dYsIQk-YrBXUzRp27Y5bdjGmKa888u7fNNt9unvBr73g0h_0k1DmkaDxfstHWHOWZ_vWZvD_eb6qmoXx-fq5u68ItSKpzkUWvr9YJrG_JeG4ci-CBIodIcTCtbD16qoJsQrFl0oxPSSLS24WLNrn5_uxjj9mPqejd9bQlRSdLiG3nURP8</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Strayer, W.T.</creator><creator>Walsh, R.</creator><creator>Livadas, C.</creator><creator>Lapsley, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200611</creationdate><title>Detecting Botnets with Tight Command and Control</title><author>Strayer, W.T. ; Walsh, R. ; Livadas, C. ; Lapsley, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-a52e779c7777afb4cc78a13dcd346167208f5fc0c56d7bdd98440ea3585199b23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bandwidth</topic><topic>Command and control systems</topic><topic>Communication system traffic control</topic><topic>Computer networks</topic><topic>Control systems</topic><topic>Government</topic><topic>Hospitals</topic><topic>Information security</topic><topic>Internet</topic><topic>Timing</topic><toplevel>online_resources</toplevel><creatorcontrib>Strayer, W.T.</creatorcontrib><creatorcontrib>Walsh, R.</creatorcontrib><creatorcontrib>Livadas, C.</creatorcontrib><creatorcontrib>Lapsley, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Strayer, W.T.</au><au>Walsh, R.</au><au>Livadas, C.</au><au>Lapsley, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Botnets with Tight Command and Control</atitle><btitle>Proceedings. 2006 31st IEEE Conference on Local Computer Networks</btitle><stitle>LCN</stitle><date>2006-11</date><risdate>2006</risdate><spage>195</spage><epage>202</epage><pages>195-202</pages><issn>0742-1303</issn><isbn>9781424404186</isbn><isbn>1424404185</isbn><eisbn>1424404193</eisbn><eisbn>9781424404193</eisbn><abstract>Systems are attempting to detect botnets by examining traffic content for IRC commands or by setting up honeynets. Our approach for detecting botnets is to examine flow characteristics such as bandwidth, duration, and packet timing looking for evidence of botnet command and control activity. We have constructed an architecture that first eliminates traffic that is unlikely to be a part of a botnet, classifies the remaining traffic into a group that is likely to be part of a botnet, then correlates the likely traffic to find common communications patterns that would suggest the activity of a botnet. Our results show that botnet evidence can be extracted from a traffic trace containing almost 9 million flows</abstract><pub>IEEE</pub><doi>10.1109/LCN.2006.322100</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0742-1303 |
ispartof | Proceedings. 2006 31st IEEE Conference on Local Computer Networks, 2006, p.195-202 |
issn | 0742-1303 |
language | eng |
recordid | cdi_ieee_primary_4116547 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Command and control systems Communication system traffic control Computer networks Control systems Government Hospitals Information security Internet Timing |
title | Detecting Botnets with Tight Command and Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Botnets%20with%20Tight%20Command%20and%20Control&rft.btitle=Proceedings.%202006%2031st%20IEEE%20Conference%20on%20Local%20Computer%20Networks&rft.au=Strayer,%20W.T.&rft.date=2006-11&rft.spage=195&rft.epage=202&rft.pages=195-202&rft.issn=0742-1303&rft.isbn=9781424404186&rft.isbn_list=1424404185&rft_id=info:doi/10.1109/LCN.2006.322100&rft_dat=%3Cieee_6IE%3E4116547%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424404193&rft.eisbn_list=9781424404193&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4116547&rfr_iscdi=true |