A New Graph-Based Clustering Approach: Application to PMSI Data
Graph coloring is used to characterize some properties of graphs. A b-coloring of a graph G (using colors 1,2,...,k) is a coloring of the vertices of G such that (i) two neighbors have different colors (proper coloring) and (ii) for each color class there exists a dominating vertex which is adjacent...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | |
container_volume | 1 |
creator | Elghazel, H. Kheddouci, H. Deslandres, V. Dussauchoy, A. |
description | Graph coloring is used to characterize some properties of graphs. A b-coloring of a graph G (using colors 1,2,...,k) is a coloring of the vertices of G such that (i) two neighbors have different colors (proper coloring) and (ii) for each color class there exists a dominating vertex which is adjacent to all other k-1 color classes. In the French healthcare system, the classification of patients into diagnosis related groups (DRGs) is performed using a supervised approach according to a decision tree. The main problem of this classification scheme concerns the heterogeneity of several DRGs resulting from the variety of pathology and examinations within the DRG class. In this paper, we propose a new approach of clustering based on a b-coloring of graphs to define a typology of patients |
doi_str_mv | 10.1109/ICSSSM.2006.320597 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4114417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4114417</ieee_id><sourcerecordid>4114417</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f2737c103629e6757e2b7f2069ae22faf9716a0b303fd2877897feefcc3e82053</originalsourceid><addsrcrecordid>eNo1j8FOwzAQRI0AiVL6A3DxD6Ts2o435oJCgFKpBaTAuXLTNTUqTZQEVfw9RcBc5s3lSSPEOcIYEdzltCjLcj5WAHasFaSODsQpGmUMmBTpUIwcZf8b7JEYKLSYYObgRIy67h320c5qbQbiOpePvJOT1jfr5MZ3vJLF5rPruY3bN5k3TVv7an31Q5tY-T7WW9nX8nleTuWt7_2ZOA5-0_Hor4fi9f7upXhIZk-TaZHPkoiU9klQpKlC0FY5tpQSqyUFBdZ5Vir44Aith6UGHVYqI8ocBeZQVZqz_Uc9FBe_3sjMi6aNH779WhhEY5D0N6jzSis</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A New Graph-Based Clustering Approach: Application to PMSI Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Elghazel, H. ; Kheddouci, H. ; Deslandres, V. ; Dussauchoy, A.</creator><creatorcontrib>Elghazel, H. ; Kheddouci, H. ; Deslandres, V. ; Dussauchoy, A.</creatorcontrib><description>Graph coloring is used to characterize some properties of graphs. A b-coloring of a graph G (using colors 1,2,...,k) is a coloring of the vertices of G such that (i) two neighbors have different colors (proper coloring) and (ii) for each color class there exists a dominating vertex which is adjacent to all other k-1 color classes. In the French healthcare system, the classification of patients into diagnosis related groups (DRGs) is performed using a supervised approach according to a decision tree. The main problem of this classification scheme concerns the heterogeneity of several DRGs resulting from the variety of pathology and examinations within the DRG class. In this paper, we propose a new approach of clustering based on a b-coloring of graphs to define a typology of patients</description><identifier>ISSN: 2161-1890</identifier><identifier>ISBN: 9781424404506</identifier><identifier>ISBN: 1424404509</identifier><identifier>EISBN: 1424404517</identifier><identifier>EISBN: 9781424404513</identifier><identifier>DOI: 10.1109/ICSSSM.2006.320597</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification tree analysis ; Clustering ; Clustering algorithms ; Clustering methods ; Decision trees ; DRG ; graph b-coloring approach ; Hospitals ; Information systems ; Laboratories ; Medical services ; partitioning ; Partitioning algorithms ; Pathology ; PMSI Data</subject><ispartof>2006 International Conference on Service Systems and Service Management, 2006, Vol.1, p.110-115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4114417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4114417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elghazel, H.</creatorcontrib><creatorcontrib>Kheddouci, H.</creatorcontrib><creatorcontrib>Deslandres, V.</creatorcontrib><creatorcontrib>Dussauchoy, A.</creatorcontrib><title>A New Graph-Based Clustering Approach: Application to PMSI Data</title><title>2006 International Conference on Service Systems and Service Management</title><addtitle>ICSSSM</addtitle><description>Graph coloring is used to characterize some properties of graphs. A b-coloring of a graph G (using colors 1,2,...,k) is a coloring of the vertices of G such that (i) two neighbors have different colors (proper coloring) and (ii) for each color class there exists a dominating vertex which is adjacent to all other k-1 color classes. In the French healthcare system, the classification of patients into diagnosis related groups (DRGs) is performed using a supervised approach according to a decision tree. The main problem of this classification scheme concerns the heterogeneity of several DRGs resulting from the variety of pathology and examinations within the DRG class. In this paper, we propose a new approach of clustering based on a b-coloring of graphs to define a typology of patients</description><subject>Classification tree analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Decision trees</subject><subject>DRG</subject><subject>graph b-coloring approach</subject><subject>Hospitals</subject><subject>Information systems</subject><subject>Laboratories</subject><subject>Medical services</subject><subject>partitioning</subject><subject>Partitioning algorithms</subject><subject>Pathology</subject><subject>PMSI Data</subject><issn>2161-1890</issn><isbn>9781424404506</isbn><isbn>1424404509</isbn><isbn>1424404517</isbn><isbn>9781424404513</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8FOwzAQRI0AiVL6A3DxD6Ts2o435oJCgFKpBaTAuXLTNTUqTZQEVfw9RcBc5s3lSSPEOcIYEdzltCjLcj5WAHasFaSODsQpGmUMmBTpUIwcZf8b7JEYKLSYYObgRIy67h320c5qbQbiOpePvJOT1jfr5MZ3vJLF5rPruY3bN5k3TVv7an31Q5tY-T7WW9nX8nleTuWt7_2ZOA5-0_Hor4fi9f7upXhIZk-TaZHPkoiU9klQpKlC0FY5tpQSqyUFBdZ5Vir44Aith6UGHVYqI8ocBeZQVZqz_Uc9FBe_3sjMi6aNH779WhhEY5D0N6jzSis</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Elghazel, H.</creator><creator>Kheddouci, H.</creator><creator>Deslandres, V.</creator><creator>Dussauchoy, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>A New Graph-Based Clustering Approach: Application to PMSI Data</title><author>Elghazel, H. ; Kheddouci, H. ; Deslandres, V. ; Dussauchoy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f2737c103629e6757e2b7f2069ae22faf9716a0b303fd2877897feefcc3e82053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Classification tree analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Decision trees</topic><topic>DRG</topic><topic>graph b-coloring approach</topic><topic>Hospitals</topic><topic>Information systems</topic><topic>Laboratories</topic><topic>Medical services</topic><topic>partitioning</topic><topic>Partitioning algorithms</topic><topic>Pathology</topic><topic>PMSI Data</topic><toplevel>online_resources</toplevel><creatorcontrib>Elghazel, H.</creatorcontrib><creatorcontrib>Kheddouci, H.</creatorcontrib><creatorcontrib>Deslandres, V.</creatorcontrib><creatorcontrib>Dussauchoy, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elghazel, H.</au><au>Kheddouci, H.</au><au>Deslandres, V.</au><au>Dussauchoy, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A New Graph-Based Clustering Approach: Application to PMSI Data</atitle><btitle>2006 International Conference on Service Systems and Service Management</btitle><stitle>ICSSSM</stitle><date>2006-10</date><risdate>2006</risdate><volume>1</volume><spage>110</spage><epage>115</epage><pages>110-115</pages><issn>2161-1890</issn><isbn>9781424404506</isbn><isbn>1424404509</isbn><eisbn>1424404517</eisbn><eisbn>9781424404513</eisbn><abstract>Graph coloring is used to characterize some properties of graphs. A b-coloring of a graph G (using colors 1,2,...,k) is a coloring of the vertices of G such that (i) two neighbors have different colors (proper coloring) and (ii) for each color class there exists a dominating vertex which is adjacent to all other k-1 color classes. In the French healthcare system, the classification of patients into diagnosis related groups (DRGs) is performed using a supervised approach according to a decision tree. The main problem of this classification scheme concerns the heterogeneity of several DRGs resulting from the variety of pathology and examinations within the DRG class. In this paper, we propose a new approach of clustering based on a b-coloring of graphs to define a typology of patients</abstract><pub>IEEE</pub><doi>10.1109/ICSSSM.2006.320597</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-1890 |
ispartof | 2006 International Conference on Service Systems and Service Management, 2006, Vol.1, p.110-115 |
issn | 2161-1890 |
language | eng |
recordid | cdi_ieee_primary_4114417 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification tree analysis Clustering Clustering algorithms Clustering methods Decision trees DRG graph b-coloring approach Hospitals Information systems Laboratories Medical services partitioning Partitioning algorithms Pathology PMSI Data |
title | A New Graph-Based Clustering Approach: Application to PMSI Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20New%20Graph-Based%20Clustering%20Approach:%20Application%20to%20PMSI%20Data&rft.btitle=2006%20International%20Conference%20on%20Service%20Systems%20and%20Service%20Management&rft.au=Elghazel,%20H.&rft.date=2006-10&rft.volume=1&rft.spage=110&rft.epage=115&rft.pages=110-115&rft.issn=2161-1890&rft.isbn=9781424404506&rft.isbn_list=1424404509&rft_id=info:doi/10.1109/ICSSSM.2006.320597&rft_dat=%3Cieee_6IE%3E4114417%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424404517&rft.eisbn_list=9781424404513&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4114417&rfr_iscdi=true |