Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold

Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) algorithm has been applied to simulate digital image restoration using posterior distribution and pixels update with self threshold method. This method was implemented to Lena image degraded with 0.15 th order salt and pepper noise by the variati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adil, K., Mengko, T.L.R., Suksmono, A.B., Danudirdjo, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5710
container_issue
container_start_page 5707
container_title
container_volume
creator Adil, K.
Mengko, T.L.R.
Suksmono, A.B.
Danudirdjo, D.
description Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) algorithm has been applied to simulate digital image restoration using posterior distribution and pixels update with self threshold method. This method was implemented to Lena image degraded with 0.15 th order salt and pepper noise by the variation of temperature at 1.5, 2.5 and 4.5. The result of digital image restoration in gray scale at temperature 1.5 is good image restored with Delta SNR 13.072 dB. In this simulation, the number of Markov chains (1000 chains) and iteration (800 iteration) are fixed parameter
doi_str_mv 10.1109/SICE.2006.314638
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4108595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4108595</ieee_id><sourcerecordid>4108595</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7a7fb180991aafbe8249cc45cc60b33ff2e6ca75f0188fd2c0e426228f77766b3</originalsourceid><addsrcrecordid>eNpVjM1KAzEYRSMiKHX2gpu8QOuX_2QpbdVCQbHTlYuSmfkyjUw7JRnBvr31Z-PdXC7ncAm5YTBhDNzdajGdTziAnggmtbBnpHDGWucUgLBKnf_b0l6SIud3OEU4rbi8Im-z2MbBd3Sx8y3SV8xDn_wQ-z1d57hv6UufB0yxT3QW85Bi9fED_b6h60NzMr-d-IkdrY50hV2g5TZh3vZdc00ugu8yFn89IuXDvJw-jZfPj4vp_XIcHQxj402omAXnmPehQsulq2up6lpDJUQIHHXtjQrArA0NrwEl15zbYIzRuhIjcvt7GxFxc0hx59NxIxlY5ZT4AvBWVOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Adil, K. ; Mengko, T.L.R. ; Suksmono, A.B. ; Danudirdjo, D.</creator><creatorcontrib>Adil, K. ; Mengko, T.L.R. ; Suksmono, A.B. ; Danudirdjo, D.</creatorcontrib><description>Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) algorithm has been applied to simulate digital image restoration using posterior distribution and pixels update with self threshold method. This method was implemented to Lena image degraded with 0.15 th order salt and pepper noise by the variation of temperature at 1.5, 2.5 and 4.5. The result of digital image restoration in gray scale at temperature 1.5 is good image restored with Delta SNR 13.072 dB. In this simulation, the number of Markov chains (1000 chains) and iteration (800 iteration) are fixed parameter</description><identifier>ISBN: 9788995003848</identifier><identifier>ISBN: 8995003847</identifier><identifier>EISBN: 9788995003855</identifier><identifier>EISBN: 8995003855</identifier><identifier>DOI: 10.1109/SICE.2006.314638</identifier><language>eng</language><publisher>IEEE</publisher><subject>Degradation ; Digital images ; Image restoration ; Low pass filters ; MHMCMC algorithm ; Monte Carlo methods ; Nonlinear filters ; Pixel ; Posteriori Distribution ; Random variables ; Self Threshold ; Stochastic resonance ; Temperature</subject><ispartof>2006 SICE-ICASE International Joint Conference, 2006, p.5707-5710</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4108595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4108595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adil, K.</creatorcontrib><creatorcontrib>Mengko, T.L.R.</creatorcontrib><creatorcontrib>Suksmono, A.B.</creatorcontrib><creatorcontrib>Danudirdjo, D.</creatorcontrib><title>Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold</title><title>2006 SICE-ICASE International Joint Conference</title><addtitle>SICE</addtitle><description>Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) algorithm has been applied to simulate digital image restoration using posterior distribution and pixels update with self threshold method. This method was implemented to Lena image degraded with 0.15 th order salt and pepper noise by the variation of temperature at 1.5, 2.5 and 4.5. The result of digital image restoration in gray scale at temperature 1.5 is good image restored with Delta SNR 13.072 dB. In this simulation, the number of Markov chains (1000 chains) and iteration (800 iteration) are fixed parameter</description><subject>Degradation</subject><subject>Digital images</subject><subject>Image restoration</subject><subject>Low pass filters</subject><subject>MHMCMC algorithm</subject><subject>Monte Carlo methods</subject><subject>Nonlinear filters</subject><subject>Pixel</subject><subject>Posteriori Distribution</subject><subject>Random variables</subject><subject>Self Threshold</subject><subject>Stochastic resonance</subject><subject>Temperature</subject><isbn>9788995003848</isbn><isbn>8995003847</isbn><isbn>9788995003855</isbn><isbn>8995003855</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjM1KAzEYRSMiKHX2gpu8QOuX_2QpbdVCQbHTlYuSmfkyjUw7JRnBvr31Z-PdXC7ncAm5YTBhDNzdajGdTziAnggmtbBnpHDGWucUgLBKnf_b0l6SIud3OEU4rbi8Im-z2MbBd3Sx8y3SV8xDn_wQ-z1d57hv6UufB0yxT3QW85Bi9fED_b6h60NzMr-d-IkdrY50hV2g5TZh3vZdc00ugu8yFn89IuXDvJw-jZfPj4vp_XIcHQxj402omAXnmPehQsulq2up6lpDJUQIHHXtjQrArA0NrwEl15zbYIzRuhIjcvt7GxFxc0hx59NxIxlY5ZT4AvBWVOQ</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Adil, K.</creator><creator>Mengko, T.L.R.</creator><creator>Suksmono, A.B.</creator><creator>Danudirdjo, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200610</creationdate><title>Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold</title><author>Adil, K. ; Mengko, T.L.R. ; Suksmono, A.B. ; Danudirdjo, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7a7fb180991aafbe8249cc45cc60b33ff2e6ca75f0188fd2c0e426228f77766b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Degradation</topic><topic>Digital images</topic><topic>Image restoration</topic><topic>Low pass filters</topic><topic>MHMCMC algorithm</topic><topic>Monte Carlo methods</topic><topic>Nonlinear filters</topic><topic>Pixel</topic><topic>Posteriori Distribution</topic><topic>Random variables</topic><topic>Self Threshold</topic><topic>Stochastic resonance</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Adil, K.</creatorcontrib><creatorcontrib>Mengko, T.L.R.</creatorcontrib><creatorcontrib>Suksmono, A.B.</creatorcontrib><creatorcontrib>Danudirdjo, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adil, K.</au><au>Mengko, T.L.R.</au><au>Suksmono, A.B.</au><au>Danudirdjo, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold</atitle><btitle>2006 SICE-ICASE International Joint Conference</btitle><stitle>SICE</stitle><date>2006-10</date><risdate>2006</risdate><spage>5707</spage><epage>5710</epage><pages>5707-5710</pages><isbn>9788995003848</isbn><isbn>8995003847</isbn><eisbn>9788995003855</eisbn><eisbn>8995003855</eisbn><abstract>Metropolis Hastings Markov Chain Monte Carlo (MHMCMC) algorithm has been applied to simulate digital image restoration using posterior distribution and pixels update with self threshold method. This method was implemented to Lena image degraded with 0.15 th order salt and pepper noise by the variation of temperature at 1.5, 2.5 and 4.5. The result of digital image restoration in gray scale at temperature 1.5 is good image restored with Delta SNR 13.072 dB. In this simulation, the number of Markov chains (1000 chains) and iteration (800 iteration) are fixed parameter</abstract><pub>IEEE</pub><doi>10.1109/SICE.2006.314638</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9788995003848
ispartof 2006 SICE-ICASE International Joint Conference, 2006, p.5707-5710
issn
language eng
recordid cdi_ieee_primary_4108595
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Degradation
Digital images
Image restoration
Low pass filters
MHMCMC algorithm
Monte Carlo methods
Nonlinear filters
Pixel
Posteriori Distribution
Random variables
Self Threshold
Stochastic resonance
Temperature
title Digital Image Restoration Using Posterior Distribution and Updating Pixel by Self Threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Digital%20Image%20Restoration%20Using%20Posterior%20Distribution%20and%20Updating%20Pixel%20by%20Self%20Threshold&rft.btitle=2006%20SICE-ICASE%20International%20Joint%20Conference&rft.au=Adil,%20K.&rft.date=2006-10&rft.spage=5707&rft.epage=5710&rft.pages=5707-5710&rft.isbn=9788995003848&rft.isbn_list=8995003847&rft_id=info:doi/10.1109/SICE.2006.314638&rft_dat=%3Cieee_6IE%3E4108595%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9788995003855&rft.eisbn_list=8995003855&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4108595&rfr_iscdi=true