Kalman Filtering for Pose-Invariant Face Recognition

We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant proportions of face classes. We employ the Kalmanfaces approach on the UMIST...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Eidenberger, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2040
container_issue
container_start_page 2037
container_title
container_volume
creator Eidenberger, H.
description We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant proportions of face classes. We employ the Kalmanfaces approach on the UMIST database, a collection of face images that were recorded under varying camera angles. Kalmanfaces show robustness against invisible facial traits and outperform the classic eigenfaces approach in terms of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application, tunable parameters, experimental results and related work on Kalman filter application in face recognition.
doi_str_mv 10.1109/ICIP.2006.312857
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4106960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4106960</ieee_id><sourcerecordid>4106960</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bd7ced7568b4f2224d5ca4dd882a7025e76a556b3e95a53097f2f1026bfff2c33</originalsourceid><addsrcrecordid>eNpVzLtKxEAUgOHxBsZ1e8EmLzDxnDP3UoKrwQUX0XqZJDPLSHYiSRB8ewttrP7ig5-xG4QKEdxdUze7igB0JZCsMids7YxFSVKCtAinrCBhkVsl3dk_A3HOClREXFoLl-xqnj8ACFBgweSzH44-l5s0LGFK-VDGcSp34xx4k7_8lHxeyo3vQvkauvGQ05LGfM0uoh_msP7rir1vHt7qJ759eWzq-y1PaNTC2950oTdK21ZGIpK96rzse2vJGyAVjPZK6VYEp7wS4EykiEC6jTFSJ8SK3f5-Uwhh_zmlo5--9xJBOw3iB1hrSRo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kalman Filtering for Pose-Invariant Face Recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eidenberger, H.</creator><creatorcontrib>Eidenberger, H.</creatorcontrib><description>We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant proportions of face classes. We employ the Kalmanfaces approach on the UMIST database, a collection of face images that were recorded under varying camera angles. Kalmanfaces show robustness against invisible facial traits and outperform the classic eigenfaces approach in terms of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application, tunable parameters, experimental results and related work on Kalman filter application in face recognition.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424404803</identifier><identifier>ISBN: 1424404800</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424404810</identifier><identifier>EISBN: 1424404819</identifier><identifier>DOI: 10.1109/ICIP.2006.312857</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Data mining ; Face detection ; Face recognition ; Facerecognition ; Feature extraction ; Filtering algorithms ; Image databases ; Kalman filters ; Kalmanfiltering ; Robustness ; Streaming media</subject><ispartof>2006 International Conference on Image Processing, 2006, p.2037-2040</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4106960$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4106960$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eidenberger, H.</creatorcontrib><title>Kalman Filtering for Pose-Invariant Face Recognition</title><title>2006 International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant proportions of face classes. We employ the Kalmanfaces approach on the UMIST database, a collection of face images that were recorded under varying camera angles. Kalmanfaces show robustness against invisible facial traits and outperform the classic eigenfaces approach in terms of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application, tunable parameters, experimental results and related work on Kalman filter application in face recognition.</description><subject>Cameras</subject><subject>Data mining</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Facerecognition</subject><subject>Feature extraction</subject><subject>Filtering algorithms</subject><subject>Image databases</subject><subject>Kalman filters</subject><subject>Kalmanfiltering</subject><subject>Robustness</subject><subject>Streaming media</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424404803</isbn><isbn>1424404800</isbn><isbn>9781424404810</isbn><isbn>1424404819</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVzLtKxEAUgOHxBsZ1e8EmLzDxnDP3UoKrwQUX0XqZJDPLSHYiSRB8ewttrP7ig5-xG4QKEdxdUze7igB0JZCsMids7YxFSVKCtAinrCBhkVsl3dk_A3HOClREXFoLl-xqnj8ACFBgweSzH44-l5s0LGFK-VDGcSp34xx4k7_8lHxeyo3vQvkauvGQ05LGfM0uoh_msP7rir1vHt7qJ759eWzq-y1PaNTC2950oTdK21ZGIpK96rzse2vJGyAVjPZK6VYEp7wS4EykiEC6jTFSJ8SK3f5-Uwhh_zmlo5--9xJBOw3iB1hrSRo</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Eidenberger, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Kalman Filtering for Pose-Invariant Face Recognition</title><author>Eidenberger, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bd7ced7568b4f2224d5ca4dd882a7025e76a556b3e95a53097f2f1026bfff2c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cameras</topic><topic>Data mining</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Facerecognition</topic><topic>Feature extraction</topic><topic>Filtering algorithms</topic><topic>Image databases</topic><topic>Kalman filters</topic><topic>Kalmanfiltering</topic><topic>Robustness</topic><topic>Streaming media</topic><toplevel>online_resources</toplevel><creatorcontrib>Eidenberger, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eidenberger, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kalman Filtering for Pose-Invariant Face Recognition</atitle><btitle>2006 International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2006-10</date><risdate>2006</risdate><spage>2037</spage><epage>2040</epage><pages>2037-2040</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424404803</isbn><isbn>1424404800</isbn><eisbn>9781424404810</eisbn><eisbn>1424404819</eisbn><abstract>We propose a novel algorithm for the identification of faces from image samples. The algorithm uses the Kalman filter to identify significant facial traits. Kalmanfaces are compact visual models that represent the invariant proportions of face classes. We employ the Kalmanfaces approach on the UMIST database, a collection of face images that were recorded under varying camera angles. Kalmanfaces show robustness against invisible facial traits and outperform the classic eigenfaces approach in terms of identification performance and algorithm speed. The paper discusses Kalmanfaces extraction, application, tunable parameters, experimental results and related work on Kalman filter application in face recognition.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2006.312857</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2006 International Conference on Image Processing, 2006, p.2037-2040
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4106960
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Data mining
Face detection
Face recognition
Facerecognition
Feature extraction
Filtering algorithms
Image databases
Kalman filters
Kalmanfiltering
Robustness
Streaming media
title Kalman Filtering for Pose-Invariant Face Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kalman%20Filtering%20for%20Pose-Invariant%20Face%20Recognition&rft.btitle=2006%20International%20Conference%20on%20Image%20Processing&rft.au=Eidenberger,%20H.&rft.date=2006-10&rft.spage=2037&rft.epage=2040&rft.pages=2037-2040&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424404803&rft.isbn_list=1424404800&rft_id=info:doi/10.1109/ICIP.2006.312857&rft_dat=%3Cieee_6IE%3E4106960%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404810&rft.eisbn_list=1424404819&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4106960&rfr_iscdi=true