Hierarchical Data Structure for Real-Time Background Subtraction
This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conve...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1852 |
---|---|
container_issue | |
container_start_page | 1849 |
container_title | |
container_volume | |
creator | Park, J. Tabb, A. Kak, A. C. |
description | This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure. |
doi_str_mv | 10.1109/ICIP.2006.312840 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4106913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4106913</ieee_id><sourcerecordid>4106913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</originalsourceid><addsrcrecordid>eNpVj8tOwzAQRc1LIpTukdjkBxJm7Eli74DwaKRKIFrW1dhxIJA2yEkW_D2VYMPmnsWRjnSFuEBIEcFcVWX1nEqAPFUoNcGBmJtCI0kiII1wKCKpNCY6I3P0z4E6FhFmUiakNZyKs2H4AJCACiNxvWh94ODeW8ddfMcjx6sxTG6cgo-bPsQvnrtk3W59fMvu8y30066OV5MdA7ux7Xfn4qThbvDzP87E68P9ulwky6fHqrxZJk7mNO7XOsNItfON9qytJZ1luSIubGaoUcbmpGvFJrcEpkDfoCz2F2QNStZazcTlb7f13m--Qrvl8L0hhNygUj-YFU1W</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Park, J. ; Tabb, A. ; Kak, A. C.</creator><creatorcontrib>Park, J. ; Tabb, A. ; Kak, A. C.</creatorcontrib><description>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424404803</identifier><identifier>ISBN: 1424404800</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424404810</identifier><identifier>EISBN: 1424404819</identifier><identifier>DOI: 10.1109/ICIP.2006.312840</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data engineering ; Data structures ; Gaussian distribution ; Image motion analysis ; Image processing ; Image segmentation ; Motion detection ; Object detection ; Pixel ; Testing</subject><ispartof>2006 International Conference on Image Processing, 2006, p.1849-1852</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4106913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4106913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Tabb, A.</creatorcontrib><creatorcontrib>Kak, A. C.</creatorcontrib><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><title>2006 International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</description><subject>Data engineering</subject><subject>Data structures</subject><subject>Gaussian distribution</subject><subject>Image motion analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Motion detection</subject><subject>Object detection</subject><subject>Pixel</subject><subject>Testing</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424404803</isbn><isbn>1424404800</isbn><isbn>9781424404810</isbn><isbn>1424404819</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tOwzAQRc1LIpTukdjkBxJm7Eli74DwaKRKIFrW1dhxIJA2yEkW_D2VYMPmnsWRjnSFuEBIEcFcVWX1nEqAPFUoNcGBmJtCI0kiII1wKCKpNCY6I3P0z4E6FhFmUiakNZyKs2H4AJCACiNxvWh94ODeW8ddfMcjx6sxTG6cgo-bPsQvnrtk3W59fMvu8y30066OV5MdA7ux7Xfn4qThbvDzP87E68P9ulwky6fHqrxZJk7mNO7XOsNItfON9qytJZ1luSIubGaoUcbmpGvFJrcEpkDfoCz2F2QNStZazcTlb7f13m--Qrvl8L0hhNygUj-YFU1W</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Park, J.</creator><creator>Tabb, A.</creator><creator>Kak, A. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><author>Park, J. ; Tabb, A. ; Kak, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data engineering</topic><topic>Data structures</topic><topic>Gaussian distribution</topic><topic>Image motion analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Motion detection</topic><topic>Object detection</topic><topic>Pixel</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Tabb, A.</creatorcontrib><creatorcontrib>Kak, A. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, J.</au><au>Tabb, A.</au><au>Kak, A. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Data Structure for Real-Time Background Subtraction</atitle><btitle>2006 International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2006-10</date><risdate>2006</risdate><spage>1849</spage><epage>1852</epage><pages>1849-1852</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424404803</isbn><isbn>1424404800</isbn><eisbn>9781424404810</eisbn><eisbn>1424404819</eisbn><abstract>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2006.312840</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2006 International Conference on Image Processing, 2006, p.1849-1852 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_4106913 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data engineering Data structures Gaussian distribution Image motion analysis Image processing Image segmentation Motion detection Object detection Pixel Testing |
title | Hierarchical Data Structure for Real-Time Background Subtraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Data%20Structure%20for%20Real-Time%20Background%20Subtraction&rft.btitle=2006%20International%20Conference%20on%20Image%20Processing&rft.au=Park,%20J.&rft.date=2006-10&rft.spage=1849&rft.epage=1852&rft.pages=1849-1852&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424404803&rft.isbn_list=1424404800&rft_id=info:doi/10.1109/ICIP.2006.312840&rft_dat=%3Cieee_6IE%3E4106913%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404810&rft.eisbn_list=1424404819&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4106913&rfr_iscdi=true |