Hierarchical Data Structure for Real-Time Background Subtraction

This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Park, J., Tabb, A., Kak, A. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1852
container_issue
container_start_page 1849
container_title
container_volume
creator Park, J.
Tabb, A.
Kak, A. C.
description This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.
doi_str_mv 10.1109/ICIP.2006.312840
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4106913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4106913</ieee_id><sourcerecordid>4106913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</originalsourceid><addsrcrecordid>eNpVj8tOwzAQRc1LIpTukdjkBxJm7Eli74DwaKRKIFrW1dhxIJA2yEkW_D2VYMPmnsWRjnSFuEBIEcFcVWX1nEqAPFUoNcGBmJtCI0kiII1wKCKpNCY6I3P0z4E6FhFmUiakNZyKs2H4AJCACiNxvWh94ODeW8ddfMcjx6sxTG6cgo-bPsQvnrtk3W59fMvu8y30066OV5MdA7ux7Xfn4qThbvDzP87E68P9ulwky6fHqrxZJk7mNO7XOsNItfON9qytJZ1luSIubGaoUcbmpGvFJrcEpkDfoCz2F2QNStZazcTlb7f13m--Qrvl8L0hhNygUj-YFU1W</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Park, J. ; Tabb, A. ; Kak, A. C.</creator><creatorcontrib>Park, J. ; Tabb, A. ; Kak, A. C.</creatorcontrib><description>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9781424404803</identifier><identifier>ISBN: 1424404800</identifier><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 9781424404810</identifier><identifier>EISBN: 1424404819</identifier><identifier>DOI: 10.1109/ICIP.2006.312840</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data engineering ; Data structures ; Gaussian distribution ; Image motion analysis ; Image processing ; Image segmentation ; Motion detection ; Object detection ; Pixel ; Testing</subject><ispartof>2006 International Conference on Image Processing, 2006, p.1849-1852</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4106913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4106913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Tabb, A.</creatorcontrib><creatorcontrib>Kak, A. C.</creatorcontrib><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><title>2006 International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</description><subject>Data engineering</subject><subject>Data structures</subject><subject>Gaussian distribution</subject><subject>Image motion analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Motion detection</subject><subject>Object detection</subject><subject>Pixel</subject><subject>Testing</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9781424404803</isbn><isbn>1424404800</isbn><isbn>9781424404810</isbn><isbn>1424404819</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tOwzAQRc1LIpTukdjkBxJm7Eli74DwaKRKIFrW1dhxIJA2yEkW_D2VYMPmnsWRjnSFuEBIEcFcVWX1nEqAPFUoNcGBmJtCI0kiII1wKCKpNCY6I3P0z4E6FhFmUiakNZyKs2H4AJCACiNxvWh94ODeW8ddfMcjx6sxTG6cgo-bPsQvnrtk3W59fMvu8y30066OV5MdA7ux7Xfn4qThbvDzP87E68P9ulwky6fHqrxZJk7mNO7XOsNItfON9qytJZ1luSIubGaoUcbmpGvFJrcEpkDfoCz2F2QNStZazcTlb7f13m--Qrvl8L0hhNygUj-YFU1W</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Park, J.</creator><creator>Tabb, A.</creator><creator>Kak, A. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>200610</creationdate><title>Hierarchical Data Structure for Real-Time Background Subtraction</title><author>Park, J. ; Tabb, A. ; Kak, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-c2bc9a14dcef8ea8bb4855634a7b594f39b648d3a96b40971ef1271422d032d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data engineering</topic><topic>Data structures</topic><topic>Gaussian distribution</topic><topic>Image motion analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Motion detection</topic><topic>Object detection</topic><topic>Pixel</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Tabb, A.</creatorcontrib><creatorcontrib>Kak, A. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, J.</au><au>Tabb, A.</au><au>Kak, A. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical Data Structure for Real-Time Background Subtraction</atitle><btitle>2006 International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2006-10</date><risdate>2006</risdate><spage>1849</spage><epage>1852</epage><pages>1849-1852</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9781424404803</isbn><isbn>1424404800</isbn><eisbn>9781424404810</eisbn><eisbn>1424404819</eisbn><abstract>This paper seeks to increase the efficiency of background subtraction algorithms for motion detection. Our method uses a quadtree-base hierarchical framework that samples a small portion of the pixels in each image and yet produces motion detection results that are very similar compared to the conventional methods that raster scan entire images. The hierarchical data structure presented in this paper can be used with any background subtraction algorithm that employs background modeling and motion detection on a per-pixel basis. We have tested our method using two common background subtraction algorithms: running average and mixture of Gaussian. Our experimental results show that the application of the hierarchical data structure significantly increases the processing speed for accurate motion detection. For example, the mixture of Gaussian method with our hierarchical data structure is able to process 1600 by 1200 images at 11~12 frames per second compared to 2~3 frames per second without using the hierarchical data structure.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2006.312840</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2006 International Conference on Image Processing, 2006, p.1849-1852
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_4106913
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data engineering
Data structures
Gaussian distribution
Image motion analysis
Image processing
Image segmentation
Motion detection
Object detection
Pixel
Testing
title Hierarchical Data Structure for Real-Time Background Subtraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20Data%20Structure%20for%20Real-Time%20Background%20Subtraction&rft.btitle=2006%20International%20Conference%20on%20Image%20Processing&rft.au=Park,%20J.&rft.date=2006-10&rft.spage=1849&rft.epage=1852&rft.pages=1849-1852&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9781424404803&rft.isbn_list=1424404800&rft_id=info:doi/10.1109/ICIP.2006.312840&rft_dat=%3Cieee_6IE%3E4106913%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424404810&rft.eisbn_list=1424404819&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4106913&rfr_iscdi=true