Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis

A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soares, L.R., de Oliveira, H.M., Cintra, R.J.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Soares, L.R.
de Oliveira, H.M.
Cintra, R.J.S.
description A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing
doi_str_mv 10.1109/TDCLA.2006.311513
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4104744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4104744</ieee_id><sourcerecordid>4104744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1333-e4d9a79e166e6c33885e96768ca803e3a2fed462686f91a711217d79b7bfea2b3</originalsourceid><addsrcrecordid>eNpVjr1OwzAUhY0QEqjkARCLXyDB13b9M4ZAaaWIDpS5cpKbYEjjKM7StycIFs5y9H3D0SHkDlgGwOzD4ako84wzpjIBsAZxQRKrDUguJePGrC__sTbXJInxky0RVikrb8g2H8fe1272YYg0tPQ1DOl-mj9CFwbX043vZ5zooxu-Ip0DffPdj3ZDQ3cn1yHNFzxHH2_JVev6iMlfr8j75vlQbNNy_7Ir8jL1IIRIUTbWaYugFKpaiOUkWqWVqZ1hAoXjLTZScWVUa8FpAA660bbSVYuOV2JF7n93PSIex8mf3HQ-SmBSSym-Aa63TOk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</creator><creatorcontrib>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</creatorcontrib><description>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</description><identifier>ISBN: 9781424402878</identifier><identifier>ISBN: 1424402875</identifier><identifier>EISBN: 9781424402885</identifier><identifier>EISBN: 1424402883</identifier><identifier>DOI: 10.1109/TDCLA.2006.311513</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chebyshev approximation ; Chebyshev wavelets ; discrete-time filters ; Filter bank ; filter banks ; Finite impulse response filter ; Frequency ; Gegenbauer polynomials ; Gegenbauer wavelets ; Image analysis ; Legendre wavelets ; Multiresolution analysis ; Nonlinear filters ; Polynomials ; Power system analysis computing ; signal analysis ; Wavelet analysis ; wavelet transform</subject><ispartof>2006 IEEE/PES Transmission &amp; Distribution Conference and Exposition: Latin America, 2006, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4104744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4104744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, L.R.</creatorcontrib><creatorcontrib>de Oliveira, H.M.</creatorcontrib><creatorcontrib>Cintra, R.J.S.</creatorcontrib><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><title>2006 IEEE/PES Transmission &amp; Distribution Conference and Exposition: Latin America</title><addtitle>TDC</addtitle><description>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</description><subject>Chebyshev approximation</subject><subject>Chebyshev wavelets</subject><subject>discrete-time filters</subject><subject>Filter bank</subject><subject>filter banks</subject><subject>Finite impulse response filter</subject><subject>Frequency</subject><subject>Gegenbauer polynomials</subject><subject>Gegenbauer wavelets</subject><subject>Image analysis</subject><subject>Legendre wavelets</subject><subject>Multiresolution analysis</subject><subject>Nonlinear filters</subject><subject>Polynomials</subject><subject>Power system analysis computing</subject><subject>signal analysis</subject><subject>Wavelet analysis</subject><subject>wavelet transform</subject><isbn>9781424402878</isbn><isbn>1424402875</isbn><isbn>9781424402885</isbn><isbn>1424402883</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjr1OwzAUhY0QEqjkARCLXyDB13b9M4ZAaaWIDpS5cpKbYEjjKM7StycIFs5y9H3D0SHkDlgGwOzD4ako84wzpjIBsAZxQRKrDUguJePGrC__sTbXJInxky0RVikrb8g2H8fe1272YYg0tPQ1DOl-mj9CFwbX043vZ5zooxu-Ip0DffPdj3ZDQ3cn1yHNFzxHH2_JVev6iMlfr8j75vlQbNNy_7Ir8jL1IIRIUTbWaYugFKpaiOUkWqWVqZ1hAoXjLTZScWVUa8FpAA660bbSVYuOV2JF7n93PSIex8mf3HQ-SmBSSym-Aa63TOk</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Soares, L.R.</creator><creator>de Oliveira, H.M.</creator><creator>Cintra, R.J.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><author>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1333-e4d9a79e166e6c33885e96768ca803e3a2fed462686f91a711217d79b7bfea2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chebyshev approximation</topic><topic>Chebyshev wavelets</topic><topic>discrete-time filters</topic><topic>Filter bank</topic><topic>filter banks</topic><topic>Finite impulse response filter</topic><topic>Frequency</topic><topic>Gegenbauer polynomials</topic><topic>Gegenbauer wavelets</topic><topic>Image analysis</topic><topic>Legendre wavelets</topic><topic>Multiresolution analysis</topic><topic>Nonlinear filters</topic><topic>Polynomials</topic><topic>Power system analysis computing</topic><topic>signal analysis</topic><topic>Wavelet analysis</topic><topic>wavelet transform</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, L.R.</creatorcontrib><creatorcontrib>de Oliveira, H.M.</creatorcontrib><creatorcontrib>Cintra, R.J.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, L.R.</au><au>de Oliveira, H.M.</au><au>Cintra, R.J.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</atitle><btitle>2006 IEEE/PES Transmission &amp; Distribution Conference and Exposition: Latin America</btitle><stitle>TDC</stitle><date>2006-08</date><risdate>2006</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424402878</isbn><isbn>1424402875</isbn><eisbn>9781424402885</eisbn><eisbn>1424402883</eisbn><abstract>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</abstract><pub>IEEE</pub><doi>10.1109/TDCLA.2006.311513</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424402878
ispartof 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 2006, p.1-6
issn
language eng
recordid cdi_ieee_primary_4104744
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chebyshev approximation
Chebyshev wavelets
discrete-time filters
Filter bank
filter banks
Finite impulse response filter
Frequency
Gegenbauer polynomials
Gegenbauer wavelets
Image analysis
Legendre wavelets
Multiresolution analysis
Nonlinear filters
Polynomials
Power system analysis computing
signal analysis
Wavelet analysis
wavelet transform
title Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applications%20of%20Non-Orthogonal%20Filter%20Banks%20to%20Signal%20and%20Image%20Analysis&rft.btitle=2006%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20and%20Exposition:%20Latin%20America&rft.au=Soares,%20L.R.&rft.date=2006-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424402878&rft.isbn_list=1424402875&rft_id=info:doi/10.1109/TDCLA.2006.311513&rft_dat=%3Cieee_6IE%3E4104744%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424402885&rft.eisbn_list=1424402883&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4104744&rfr_iscdi=true