Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis
A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet func...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Soares, L.R. de Oliveira, H.M. Cintra, R.J.S. |
description | A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing |
doi_str_mv | 10.1109/TDCLA.2006.311513 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4104744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4104744</ieee_id><sourcerecordid>4104744</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1333-e4d9a79e166e6c33885e96768ca803e3a2fed462686f91a711217d79b7bfea2b3</originalsourceid><addsrcrecordid>eNpVjr1OwzAUhY0QEqjkARCLXyDB13b9M4ZAaaWIDpS5cpKbYEjjKM7StycIFs5y9H3D0SHkDlgGwOzD4ako84wzpjIBsAZxQRKrDUguJePGrC__sTbXJInxky0RVikrb8g2H8fe1272YYg0tPQ1DOl-mj9CFwbX043vZ5zooxu-Ip0DffPdj3ZDQ3cn1yHNFzxHH2_JVev6iMlfr8j75vlQbNNy_7Ir8jL1IIRIUTbWaYugFKpaiOUkWqWVqZ1hAoXjLTZScWVUa8FpAA660bbSVYuOV2JF7n93PSIex8mf3HQ-SmBSSym-Aa63TOk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</creator><creatorcontrib>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</creatorcontrib><description>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</description><identifier>ISBN: 9781424402878</identifier><identifier>ISBN: 1424402875</identifier><identifier>EISBN: 9781424402885</identifier><identifier>EISBN: 1424402883</identifier><identifier>DOI: 10.1109/TDCLA.2006.311513</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chebyshev approximation ; Chebyshev wavelets ; discrete-time filters ; Filter bank ; filter banks ; Finite impulse response filter ; Frequency ; Gegenbauer polynomials ; Gegenbauer wavelets ; Image analysis ; Legendre wavelets ; Multiresolution analysis ; Nonlinear filters ; Polynomials ; Power system analysis computing ; signal analysis ; Wavelet analysis ; wavelet transform</subject><ispartof>2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 2006, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4104744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4104744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, L.R.</creatorcontrib><creatorcontrib>de Oliveira, H.M.</creatorcontrib><creatorcontrib>Cintra, R.J.S.</creatorcontrib><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><title>2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America</title><addtitle>TDC</addtitle><description>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</description><subject>Chebyshev approximation</subject><subject>Chebyshev wavelets</subject><subject>discrete-time filters</subject><subject>Filter bank</subject><subject>filter banks</subject><subject>Finite impulse response filter</subject><subject>Frequency</subject><subject>Gegenbauer polynomials</subject><subject>Gegenbauer wavelets</subject><subject>Image analysis</subject><subject>Legendre wavelets</subject><subject>Multiresolution analysis</subject><subject>Nonlinear filters</subject><subject>Polynomials</subject><subject>Power system analysis computing</subject><subject>signal analysis</subject><subject>Wavelet analysis</subject><subject>wavelet transform</subject><isbn>9781424402878</isbn><isbn>1424402875</isbn><isbn>9781424402885</isbn><isbn>1424402883</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVjr1OwzAUhY0QEqjkARCLXyDB13b9M4ZAaaWIDpS5cpKbYEjjKM7StycIFs5y9H3D0SHkDlgGwOzD4ako84wzpjIBsAZxQRKrDUguJePGrC__sTbXJInxky0RVikrb8g2H8fe1272YYg0tPQ1DOl-mj9CFwbX043vZ5zooxu-Ip0DffPdj3ZDQ3cn1yHNFzxHH2_JVev6iMlfr8j75vlQbNNy_7Ir8jL1IIRIUTbWaYugFKpaiOUkWqWVqZ1hAoXjLTZScWVUa8FpAA660bbSVYuOV2JF7n93PSIex8mf3HQ-SmBSSym-Aa63TOk</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Soares, L.R.</creator><creator>de Oliveira, H.M.</creator><creator>Cintra, R.J.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</title><author>Soares, L.R. ; de Oliveira, H.M. ; Cintra, R.J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1333-e4d9a79e166e6c33885e96768ca803e3a2fed462686f91a711217d79b7bfea2b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chebyshev approximation</topic><topic>Chebyshev wavelets</topic><topic>discrete-time filters</topic><topic>Filter bank</topic><topic>filter banks</topic><topic>Finite impulse response filter</topic><topic>Frequency</topic><topic>Gegenbauer polynomials</topic><topic>Gegenbauer wavelets</topic><topic>Image analysis</topic><topic>Legendre wavelets</topic><topic>Multiresolution analysis</topic><topic>Nonlinear filters</topic><topic>Polynomials</topic><topic>Power system analysis computing</topic><topic>signal analysis</topic><topic>Wavelet analysis</topic><topic>wavelet transform</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, L.R.</creatorcontrib><creatorcontrib>de Oliveira, H.M.</creatorcontrib><creatorcontrib>Cintra, R.J.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, L.R.</au><au>de Oliveira, H.M.</au><au>Cintra, R.J.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis</atitle><btitle>2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America</btitle><stitle>TDC</stitle><date>2006-08</date><risdate>2006</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781424402878</isbn><isbn>1424402875</isbn><eisbn>9781424402885</eisbn><eisbn>1424402883</eisbn><abstract>A non-orthogonal wavelet-based multiresolution analysis was already provided by scaling and wavelet filters derived from Gegenbauer polynomials. Allowing for odd n (the polynomial order) and a value (a polynomial parameter) within the orthogonality range of such polynomials, scaling and wavelet functions are generated by frequency selective FIR filters. These filters have compact support and generalized linear phase. Special cases of such filter banks include Haar, Legendre, and Chebyshev wavelets. As an improvement, it has been achieved that for specific a values it is possible to reach a filter with flat magnitude frequency response. We obtain a unique closed expression for a value for every n odd value. The main advantages in favor of Gegenbauer filters are their smaller computational effort and a constant group delay, as they are symmetric filters. Potential applications of such wavelets include fault analysis in transmission lines of power systems and image processing</abstract><pub>IEEE</pub><doi>10.1109/TDCLA.2006.311513</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424402878 |
ispartof | 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 2006, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4104744 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chebyshev approximation Chebyshev wavelets discrete-time filters Filter bank filter banks Finite impulse response filter Frequency Gegenbauer polynomials Gegenbauer wavelets Image analysis Legendre wavelets Multiresolution analysis Nonlinear filters Polynomials Power system analysis computing signal analysis Wavelet analysis wavelet transform |
title | Applications of Non-Orthogonal Filter Banks to Signal and Image Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applications%20of%20Non-Orthogonal%20Filter%20Banks%20to%20Signal%20and%20Image%20Analysis&rft.btitle=2006%20IEEE/PES%20Transmission%20&%20Distribution%20Conference%20and%20Exposition:%20Latin%20America&rft.au=Soares,%20L.R.&rft.date=2006-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781424402878&rft.isbn_list=1424402875&rft_id=info:doi/10.1109/TDCLA.2006.311513&rft_dat=%3Cieee_6IE%3E4104744%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424402885&rft.eisbn_list=1424402883&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4104744&rfr_iscdi=true |