Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation

The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 1980-07, Vol.AES-16 (4), p.481-491
Hauptverfasser: Upadhyay, Triveni N., Damoulakis, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 4
container_start_page 481
container_title IEEE transactions on aerospace and electronic systems
container_volume AES-16
creator Upadhyay, Triveni N.
Damoulakis, John N.
description The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented covariance and filter gains at a slower rate than the state measurement update, and it uses U-D factor formulation to perform covariance computations. The SPWR algorithm saves real-time processing requirements without appreciable degradation of filter performance. Another important feature of the SPWR algorithm is that it incorporates pseudorange and delta-range data from each GPS satellite sequentially for navigation solution. The SPWR algorithm, for this application, was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented.
doi_str_mv 10.1109/TAES.1980.308978
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_4102354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4102354</ieee_id><sourcerecordid>10_1109_TAES_1980_308978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-166cc01c78dfc6678fb1c318bd82d54ed5cbb208fecd3f4aeee37836cd5543c93</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi_5A625TZOmj2NuUxg63Hwu6e2NRLZVk25j_96OiU-HA-d8Dx9j9yBSAFE-rkaTZQqlEakUpizMBRuAUkVSaiEv2UAIMEmZKbhmNzF-9TU3uRywyZJ-drTtvF3zhSekg4_E3wl3Ifo98alfdxS4awOfLZZ83h6Sp-PWbjxG_mr3_tN2vt3esitn15Hu_nLIPqaT1fg5mb_NXsajeYKZhi4BrREFYGEah1oXxtWAEkzdmKxROTUK6zoTxhE20uWWiGRhpMZGqVxiKYdMnLkY2hgDueo7-I0NxwpEddJQnTRUJw3VWUN_eThffE_7n-cgMtkzfwEgKloA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation</title><source>IEEE Electronic Library (IEL)</source><creator>Upadhyay, Triveni N. ; Damoulakis, John N.</creator><creatorcontrib>Upadhyay, Triveni N. ; Damoulakis, John N.</creatorcontrib><description>The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented covariance and filter gains at a slower rate than the state measurement update, and it uses U-D factor formulation to perform covariance computations. The SPWR algorithm saves real-time processing requirements without appreciable degradation of filter performance. Another important feature of the SPWR algorithm is that it incorporates pseudorange and delta-range data from each GPS satellite sequentially for navigation solution. The SPWR algorithm, for this application, was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.1980.308978</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Filters ; Floating-point arithmetic ; Gain measurement ; Global Positioning System ; Navigation ; Performance evaluation ; Performance gain ; Real time systems ; Recursive estimation</subject><ispartof>IEEE transactions on aerospace and electronic systems, 1980-07, Vol.AES-16 (4), p.481-491</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-166cc01c78dfc6678fb1c318bd82d54ed5cbb208fecd3f4aeee37836cd5543c93</citedby><cites>FETCH-LOGICAL-c261t-166cc01c78dfc6678fb1c318bd82d54ed5cbb208fecd3f4aeee37836cd5543c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4102354$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4102354$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Upadhyay, Triveni N.</creatorcontrib><creatorcontrib>Damoulakis, John N.</creatorcontrib><title>Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented covariance and filter gains at a slower rate than the state measurement update, and it uses U-D factor formulation to perform covariance computations. The SPWR algorithm saves real-time processing requirements without appreciable degradation of filter performance. Another important feature of the SPWR algorithm is that it incorporates pseudorange and delta-range data from each GPS satellite sequentially for navigation solution. The SPWR algorithm, for this application, was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented.</description><subject>Algorithm design and analysis</subject><subject>Filters</subject><subject>Floating-point arithmetic</subject><subject>Gain measurement</subject><subject>Global Positioning System</subject><subject>Navigation</subject><subject>Performance evaluation</subject><subject>Performance gain</subject><subject>Real time systems</subject><subject>Recursive estimation</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKfvgi_5A625TZOmj2NuUxg63Hwu6e2NRLZVk25j_96OiU-HA-d8Dx9j9yBSAFE-rkaTZQqlEakUpizMBRuAUkVSaiEv2UAIMEmZKbhmNzF-9TU3uRywyZJ-drTtvF3zhSekg4_E3wl3Ifo98alfdxS4awOfLZZ83h6Sp-PWbjxG_mr3_tN2vt3esitn15Hu_nLIPqaT1fg5mb_NXsajeYKZhi4BrREFYGEah1oXxtWAEkzdmKxROTUK6zoTxhE20uWWiGRhpMZGqVxiKYdMnLkY2hgDueo7-I0NxwpEddJQnTRUJw3VWUN_eThffE_7n-cgMtkzfwEgKloA</recordid><startdate>198007</startdate><enddate>198007</enddate><creator>Upadhyay, Triveni N.</creator><creator>Damoulakis, John N.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198007</creationdate><title>Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation</title><author>Upadhyay, Triveni N. ; Damoulakis, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-166cc01c78dfc6678fb1c318bd82d54ed5cbb208fecd3f4aeee37836cd5543c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Algorithm design and analysis</topic><topic>Filters</topic><topic>Floating-point arithmetic</topic><topic>Gain measurement</topic><topic>Global Positioning System</topic><topic>Navigation</topic><topic>Performance evaluation</topic><topic>Performance gain</topic><topic>Real time systems</topic><topic>Recursive estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Upadhyay, Triveni N.</creatorcontrib><creatorcontrib>Damoulakis, John N.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Upadhyay, Triveni N.</au><au>Damoulakis, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>1980-07</date><risdate>1980</risdate><volume>AES-16</volume><issue>4</issue><spage>481</spage><epage>491</epage><pages>481-491</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The design, implementation, and performance of a real-time estimation algorithm, referred to in this paper as the sequential piecewise recursive (SPWR) algorithm, for the global-positioning system (GPS) low-dynamics navigation system is described. The SPWR algorithm for this application was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented covariance and filter gains at a slower rate than the state measurement update, and it uses U-D factor formulation to perform covariance computations. The SPWR algorithm saves real-time processing requirements without appreciable degradation of filter performance. Another important feature of the SPWR algorithm is that it incorporates pseudorange and delta-range data from each GPS satellite sequentially for navigation solution. The SPWR algorithm, for this application, was implemented in single precision arithmetic (32 bit, floating point). Numerical results are presented.</abstract><pub>IEEE</pub><doi>10.1109/TAES.1980.308978</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 1980-07, Vol.AES-16 (4), p.481-491
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_4102354
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Filters
Floating-point arithmetic
Gain measurement
Global Positioning System
Navigation
Performance evaluation
Performance gain
Real time systems
Recursive estimation
title Sequential Piecewise Recursive Filter for GPS Low-Dynamics Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Piecewise%20Recursive%20Filter%20for%20GPS%20Low-Dynamics%20Navigation&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Upadhyay,%20Triveni%20N.&rft.date=1980-07&rft.volume=AES-16&rft.issue=4&rft.spage=481&rft.epage=491&rft.pages=481-491&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.1980.308978&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_1980_308978%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4102354&rfr_iscdi=true