Training-Based Descreening
Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2007-03, Vol.16 (3), p.789-802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 3 |
container_start_page | 789 |
container_title | IEEE transactions on image processing |
container_volume | 16 |
creator | Siddiqui, H. Bouman, C.A. |
description | Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise |
doi_str_mv | 10.1109/TIP.2006.888356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4099406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4099406</ieee_id><sourcerecordid>896194012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgipvTs6AgIqinbm8-mo-jzq_BQA_zHNI0lY6uncl68L83s8WBB09vSH554XkQOsUwxhjUZDF7GxMAPpZS0pTvoSFWDCcAjOzHM6QiEZipAToKYQmAWYr5IRpgQVMhqBiis4U3ZV3WH8m9CS6_fHDBeue2N8fooDBVcCf9HKH3p8fF9CWZvz7PpnfzxDJgmyTj0ihsqTUSi1wRYrM4ATsrC-Iyl6eCAc8pUEMzzAqmFLeEi0JIKji1dIRuu71r33y2Lmz0qgzWVZWpXdMGLRWPoQCTKG_-lQKIIPQHXv2By6b1dUyhJU-BgmQqokmHrG9C8K7Qa1-ujP_SGPS2XR3b1dt2dddu_HHRr22zlct3vq8zgusemGBNVXhT2zLsnEwZUC6jO-9c6Zz7fWagYk5OvwGtp4b9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865030849</pqid></control><display><type>article</type><title>Training-Based Descreening</title><source>IEEE Xplore</source><creator>Siddiqui, H. ; Bouman, C.A.</creator><creatorcontrib>Siddiqui, H. ; Bouman, C.A.</creatorcontrib><description>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.888356</identifier><identifier>PMID: 17357737</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Colorimetry - methods ; Descreening ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Filters ; halftone ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image resolution ; Image segmentation ; Information, signal and communications theory ; Mathematical models ; Miscellaneous ; Moiré artifacts ; Multifunctional office equipment ; Noise reduction ; Pattern Recognition, Automated - methods ; Predictive models ; Printers ; Printing ; Printing - methods ; Reproducibility of Results ; Reproduction ; resolution synthesis ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; smallest univalue segment assimilating nucleus (SUSAN) filter ; Stochastic processes ; Stochasticity ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2007-03, Vol.16 (3), p.789-802</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</citedby><cites>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4099406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4099406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18540368$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17357737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siddiqui, H.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><title>Training-Based Descreening</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Colorimetry - methods</subject><subject>Descreening</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Filters</subject><subject>halftone</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Moiré artifacts</subject><subject>Multifunctional office equipment</subject><subject>Noise reduction</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive models</subject><subject>Printers</subject><subject>Printing</subject><subject>Printing - methods</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>resolution synthesis</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>smallest univalue segment assimilating nucleus (SUSAN) filter</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90M1LwzAYBvAgipvTs6AgIqinbm8-mo-jzq_BQA_zHNI0lY6uncl68L83s8WBB09vSH554XkQOsUwxhjUZDF7GxMAPpZS0pTvoSFWDCcAjOzHM6QiEZipAToKYQmAWYr5IRpgQVMhqBiis4U3ZV3WH8m9CS6_fHDBeue2N8fooDBVcCf9HKH3p8fF9CWZvz7PpnfzxDJgmyTj0ihsqTUSi1wRYrM4ATsrC-Iyl6eCAc8pUEMzzAqmFLeEi0JIKji1dIRuu71r33y2Lmz0qgzWVZWpXdMGLRWPoQCTKG_-lQKIIPQHXv2By6b1dUyhJU-BgmQqokmHrG9C8K7Qa1-ujP_SGPS2XR3b1dt2dddu_HHRr22zlct3vq8zgusemGBNVXhT2zLsnEwZUC6jO-9c6Zz7fWagYk5OvwGtp4b9</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Siddiqui, H.</creator><creator>Bouman, C.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070301</creationdate><title>Training-Based Descreening</title><author>Siddiqui, H. ; Bouman, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Colorimetry - methods</topic><topic>Descreening</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Filters</topic><topic>halftone</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Moiré artifacts</topic><topic>Multifunctional office equipment</topic><topic>Noise reduction</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive models</topic><topic>Printers</topic><topic>Printing</topic><topic>Printing - methods</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>resolution synthesis</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>smallest univalue segment assimilating nucleus (SUSAN) filter</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, H.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siddiqui, H.</au><au>Bouman, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training-Based Descreening</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>16</volume><issue>3</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17357737</pmid><doi>10.1109/TIP.2006.888356</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2007-03, Vol.16 (3), p.789-802 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_ieee_primary_4099406 |
source | IEEE Xplore |
subjects | Algorithms Applied sciences Artificial Intelligence Colorimetry - methods Descreening Detection, estimation, filtering, equalization, prediction Exact sciences and technology Filtering Filtering algorithms Filters halftone Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image resolution Image segmentation Information, signal and communications theory Mathematical models Miscellaneous Moiré artifacts Multifunctional office equipment Noise reduction Pattern Recognition, Automated - methods Predictive models Printers Printing Printing - methods Reproducibility of Results Reproduction resolution synthesis Sensitivity and Specificity Signal and communications theory Signal processing Signal, noise smallest univalue segment assimilating nucleus (SUSAN) filter Stochastic processes Stochasticity Telecommunications and information theory |
title | Training-Based Descreening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training-Based%20Descreening&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Siddiqui,%20H.&rft.date=2007-03-01&rft.volume=16&rft.issue=3&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.888356&rft_dat=%3Cproquest_RIE%3E896194012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865030849&rft_id=info:pmid/17357737&rft_ieee_id=4099406&rfr_iscdi=true |