Training-Based Descreening

Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2007-03, Vol.16 (3), p.789-802
Hauptverfasser: Siddiqui, H., Bouman, C.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 3
container_start_page 789
container_title IEEE transactions on image processing
container_volume 16
creator Siddiqui, H.
Bouman, C.A.
description Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise
doi_str_mv 10.1109/TIP.2006.888356
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4099406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4099406</ieee_id><sourcerecordid>896194012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</originalsourceid><addsrcrecordid>eNp90M1LwzAYBvAgipvTs6AgIqinbm8-mo-jzq_BQA_zHNI0lY6uncl68L83s8WBB09vSH554XkQOsUwxhjUZDF7GxMAPpZS0pTvoSFWDCcAjOzHM6QiEZipAToKYQmAWYr5IRpgQVMhqBiis4U3ZV3WH8m9CS6_fHDBeue2N8fooDBVcCf9HKH3p8fF9CWZvz7PpnfzxDJgmyTj0ihsqTUSi1wRYrM4ATsrC-Iyl6eCAc8pUEMzzAqmFLeEi0JIKji1dIRuu71r33y2Lmz0qgzWVZWpXdMGLRWPoQCTKG_-lQKIIPQHXv2By6b1dUyhJU-BgmQqokmHrG9C8K7Qa1-ujP_SGPS2XR3b1dt2dddu_HHRr22zlct3vq8zgusemGBNVXhT2zLsnEwZUC6jO-9c6Zz7fWagYk5OvwGtp4b9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865030849</pqid></control><display><type>article</type><title>Training-Based Descreening</title><source>IEEE Xplore</source><creator>Siddiqui, H. ; Bouman, C.A.</creator><creatorcontrib>Siddiqui, H. ; Bouman, C.A.</creatorcontrib><description>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2006.888356</identifier><identifier>PMID: 17357737</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Colorimetry - methods ; Descreening ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filtering algorithms ; Filters ; halftone ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image resolution ; Image segmentation ; Information, signal and communications theory ; Mathematical models ; Miscellaneous ; Moiré artifacts ; Multifunctional office equipment ; Noise reduction ; Pattern Recognition, Automated - methods ; Predictive models ; Printers ; Printing ; Printing - methods ; Reproducibility of Results ; Reproduction ; resolution synthesis ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; smallest univalue segment assimilating nucleus (SUSAN) filter ; Stochastic processes ; Stochasticity ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2007-03, Vol.16 (3), p.789-802</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</citedby><cites>FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4099406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4099406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18540368$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17357737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siddiqui, H.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><title>Training-Based Descreening</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Colorimetry - methods</subject><subject>Descreening</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filtering algorithms</subject><subject>Filters</subject><subject>halftone</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>Mathematical models</subject><subject>Miscellaneous</subject><subject>Moiré artifacts</subject><subject>Multifunctional office equipment</subject><subject>Noise reduction</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictive models</subject><subject>Printers</subject><subject>Printing</subject><subject>Printing - methods</subject><subject>Reproducibility of Results</subject><subject>Reproduction</subject><subject>resolution synthesis</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>smallest univalue segment assimilating nucleus (SUSAN) filter</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90M1LwzAYBvAgipvTs6AgIqinbm8-mo-jzq_BQA_zHNI0lY6uncl68L83s8WBB09vSH554XkQOsUwxhjUZDF7GxMAPpZS0pTvoSFWDCcAjOzHM6QiEZipAToKYQmAWYr5IRpgQVMhqBiis4U3ZV3WH8m9CS6_fHDBeue2N8fooDBVcCf9HKH3p8fF9CWZvz7PpnfzxDJgmyTj0ihsqTUSi1wRYrM4ATsrC-Iyl6eCAc8pUEMzzAqmFLeEi0JIKji1dIRuu71r33y2Lmz0qgzWVZWpXdMGLRWPoQCTKG_-lQKIIPQHXv2By6b1dUyhJU-BgmQqokmHrG9C8K7Qa1-ujP_SGPS2XR3b1dt2dddu_HHRr22zlct3vq8zgusemGBNVXhT2zLsnEwZUC6jO-9c6Zz7fWagYk5OvwGtp4b9</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Siddiqui, H.</creator><creator>Bouman, C.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070301</creationdate><title>Training-Based Descreening</title><author>Siddiqui, H. ; Bouman, C.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-b68a91c3ca817d922cb17d01ec8f2ebed57406d303a3b14f4996c267f783763c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Colorimetry - methods</topic><topic>Descreening</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filtering algorithms</topic><topic>Filters</topic><topic>halftone</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>Mathematical models</topic><topic>Miscellaneous</topic><topic>Moiré artifacts</topic><topic>Multifunctional office equipment</topic><topic>Noise reduction</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictive models</topic><topic>Printers</topic><topic>Printing</topic><topic>Printing - methods</topic><topic>Reproducibility of Results</topic><topic>Reproduction</topic><topic>resolution synthesis</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>smallest univalue segment assimilating nucleus (SUSAN) filter</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, H.</creatorcontrib><creatorcontrib>Bouman, C.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siddiqui, H.</au><au>Bouman, C.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training-Based Descreening</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>16</volume><issue>3</issue><spage>789</spage><epage>802</epage><pages>789-802</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Conventional halftoning methods employed in electrophotographic printers tend to produce Moireacute artifacts when used for printing images scanned from printed material, such as books and magazines. We present a novel approach for descreening color scanned documents aimed at providing an efficient solution to the Moireacute problem in practical imaging devices, including copiers and multifunction printers. The algorithm works by combining two nonlinear image-processing techniques, resolution synthesis-based denoising (RSD), and modified smallest univalue segment assimilating nucleus (SUSAN) filtering. The RSD predictor is based on a stochastic image model whose parameters are optimized beforehand in a separate training procedure. Using the optimized parameters, RSD classifies the local window around the current pixel in the scanned image and applies filters optimized for the selected classes. The output of the RSD predictor is treated as a first-order estimate to the descreened image. The modified SUSAN filter uses the output of RSD for performing an edge-preserving smoothing on the raw scanned data and produces the final output of the descreening algorithm. Our method does not require any knowledge of the screening method, such as the screen frequency or dither matrix coefficients, that produced the printed original. The proposed scheme not only suppresses the Moireacute artifacts, but, in addition, can be trained with intrinsic sharpening for deblurring scanned documents. Finally, once optimized for a periodic clustered-dot halftoning method, the same algorithm can be used to inverse halftone scanned images containing stochastic error diffusion halftone noise</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>17357737</pmid><doi>10.1109/TIP.2006.888356</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2007-03, Vol.16 (3), p.789-802
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_4099406
source IEEE Xplore
subjects Algorithms
Applied sciences
Artificial Intelligence
Colorimetry - methods
Descreening
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Filtering algorithms
Filters
halftone
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image resolution
Image segmentation
Information, signal and communications theory
Mathematical models
Miscellaneous
Moiré artifacts
Multifunctional office equipment
Noise reduction
Pattern Recognition, Automated - methods
Predictive models
Printers
Printing
Printing - methods
Reproducibility of Results
Reproduction
resolution synthesis
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal, noise
smallest univalue segment assimilating nucleus (SUSAN) filter
Stochastic processes
Stochasticity
Telecommunications and information theory
title Training-Based Descreening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training-Based%20Descreening&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Siddiqui,%20H.&rft.date=2007-03-01&rft.volume=16&rft.issue=3&rft.spage=789&rft.epage=802&rft.pages=789-802&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2006.888356&rft_dat=%3Cproquest_RIE%3E896194012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865030849&rft_id=info:pmid/17357737&rft_ieee_id=4099406&rfr_iscdi=true