Fuzzy Neural Network Model Applied in the Traffic Flow Prediction
The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1233 |
---|---|
container_issue | |
container_start_page | 1229 |
container_title | |
container_volume | |
creator | Gang Tong Chunling Fan Fengying Cui Xiangzhong Meng |
description | The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective |
doi_str_mv | 10.1109/ICIA.2006.305923 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4097856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4097856</ieee_id><sourcerecordid>4097856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ffc643e1a93f31e14a421710ed7a019710b243a3536e737d9f5cf2ff4016011e3</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhUdEUGv2gpv5A4n3ziPTWYZgbKA-FnVdxuQOjsYmTFJK--sNqGfznW9z4DB2i5Ahgr2vy7rIBECeSdBWyDN2jUooBVpYc84Sa5b_vhSXLBnHT5gjrUaRX7Gi2p9OR_5M--i6GdOhj1_8qW-p48UwdIFaHnZ8-iC-ic770PCq6w_8NVIbmin0uxt24V03UvLHBXurHjblKl2_PNZlsU4DGj2l3je5koTOSi-RUDkl0CBQaxygndu7UNJJLXMy0rTW68YL7xVgDogkF-zudzcQ0XaI4dvF41bBfFDn8gcw_0ka</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</creator><creatorcontrib>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</creatorcontrib><description>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</description><identifier>ISBN: 9781424405282</identifier><identifier>ISBN: 1424405289</identifier><identifier>EISBN: 1424405297</identifier><identifier>EISBN: 9781424405299</identifier><identifier>DOI: 10.1109/ICIA.2006.305923</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system traffic control ; Fuzzy control ; Fuzzy neural network model ; Fuzzy neural networks ; Neural networks ; Partitioning algorithms ; Prediction ; Prediction algorithms ; Predictive models ; Real time systems ; Telecommunication traffic ; Traffic control ; Traffic flow</subject><ispartof>2006 IEEE International Conference on Information Acquisition, 2006, p.1229-1233</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4097856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4097856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gang Tong</creatorcontrib><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><creatorcontrib>Xiangzhong Meng</creatorcontrib><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><title>2006 IEEE International Conference on Information Acquisition</title><addtitle>ICIA</addtitle><description>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</description><subject>Communication system traffic control</subject><subject>Fuzzy control</subject><subject>Fuzzy neural network model</subject><subject>Fuzzy neural networks</subject><subject>Neural networks</subject><subject>Partitioning algorithms</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real time systems</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Traffic flow</subject><isbn>9781424405282</isbn><isbn>1424405289</isbn><isbn>1424405297</isbn><isbn>9781424405299</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUhUdEUGv2gpv5A4n3ziPTWYZgbKA-FnVdxuQOjsYmTFJK--sNqGfznW9z4DB2i5Ahgr2vy7rIBECeSdBWyDN2jUooBVpYc84Sa5b_vhSXLBnHT5gjrUaRX7Gi2p9OR_5M--i6GdOhj1_8qW-p48UwdIFaHnZ8-iC-ic770PCq6w_8NVIbmin0uxt24V03UvLHBXurHjblKl2_PNZlsU4DGj2l3je5koTOSi-RUDkl0CBQaxygndu7UNJJLXMy0rTW68YL7xVgDogkF-zudzcQ0XaI4dvF41bBfFDn8gcw_0ka</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Gang Tong</creator><creator>Chunling Fan</creator><creator>Fengying Cui</creator><creator>Xiangzhong Meng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><author>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ffc643e1a93f31e14a421710ed7a019710b243a3536e737d9f5cf2ff4016011e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Communication system traffic control</topic><topic>Fuzzy control</topic><topic>Fuzzy neural network model</topic><topic>Fuzzy neural networks</topic><topic>Neural networks</topic><topic>Partitioning algorithms</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real time systems</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Gang Tong</creatorcontrib><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><creatorcontrib>Xiangzhong Meng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gang Tong</au><au>Chunling Fan</au><au>Fengying Cui</au><au>Xiangzhong Meng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</atitle><btitle>2006 IEEE International Conference on Information Acquisition</btitle><stitle>ICIA</stitle><date>2006-08</date><risdate>2006</risdate><spage>1229</spage><epage>1233</epage><pages>1229-1233</pages><isbn>9781424405282</isbn><isbn>1424405289</isbn><eisbn>1424405297</eisbn><eisbn>9781424405299</eisbn><abstract>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</abstract><pub>IEEE</pub><doi>10.1109/ICIA.2006.305923</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424405282 |
ispartof | 2006 IEEE International Conference on Information Acquisition, 2006, p.1229-1233 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4097856 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Communication system traffic control Fuzzy control Fuzzy neural network model Fuzzy neural networks Neural networks Partitioning algorithms Prediction Prediction algorithms Predictive models Real time systems Telecommunication traffic Traffic control Traffic flow |
title | Fuzzy Neural Network Model Applied in the Traffic Flow Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20Neural%20Network%20Model%20Applied%20in%20the%20Traffic%20Flow%20Prediction&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Information%20Acquisition&rft.au=Gang%20Tong&rft.date=2006-08&rft.spage=1229&rft.epage=1233&rft.pages=1229-1233&rft.isbn=9781424405282&rft.isbn_list=1424405289&rft_id=info:doi/10.1109/ICIA.2006.305923&rft_dat=%3Cieee_6IE%3E4097856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405297&rft.eisbn_list=9781424405299&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4097856&rfr_iscdi=true |