Fuzzy Neural Network Model Applied in the Traffic Flow Prediction

The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gang Tong, Chunling Fan, Fengying Cui, Xiangzhong Meng
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1233
container_issue
container_start_page 1229
container_title
container_volume
creator Gang Tong
Chunling Fan
Fengying Cui
Xiangzhong Meng
description The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective
doi_str_mv 10.1109/ICIA.2006.305923
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4097856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4097856</ieee_id><sourcerecordid>4097856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ffc643e1a93f31e14a421710ed7a019710b243a3536e737d9f5cf2ff4016011e3</originalsourceid><addsrcrecordid>eNo1j0tLw0AUhUdEUGv2gpv5A4n3ziPTWYZgbKA-FnVdxuQOjsYmTFJK--sNqGfznW9z4DB2i5Ahgr2vy7rIBECeSdBWyDN2jUooBVpYc84Sa5b_vhSXLBnHT5gjrUaRX7Gi2p9OR_5M--i6GdOhj1_8qW-p48UwdIFaHnZ8-iC-ic770PCq6w_8NVIbmin0uxt24V03UvLHBXurHjblKl2_PNZlsU4DGj2l3je5koTOSi-RUDkl0CBQaxygndu7UNJJLXMy0rTW68YL7xVgDogkF-zudzcQ0XaI4dvF41bBfFDn8gcw_0ka</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</creator><creatorcontrib>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</creatorcontrib><description>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</description><identifier>ISBN: 9781424405282</identifier><identifier>ISBN: 1424405289</identifier><identifier>EISBN: 1424405297</identifier><identifier>EISBN: 9781424405299</identifier><identifier>DOI: 10.1109/ICIA.2006.305923</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communication system traffic control ; Fuzzy control ; Fuzzy neural network model ; Fuzzy neural networks ; Neural networks ; Partitioning algorithms ; Prediction ; Prediction algorithms ; Predictive models ; Real time systems ; Telecommunication traffic ; Traffic control ; Traffic flow</subject><ispartof>2006 IEEE International Conference on Information Acquisition, 2006, p.1229-1233</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4097856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4097856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gang Tong</creatorcontrib><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><creatorcontrib>Xiangzhong Meng</creatorcontrib><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><title>2006 IEEE International Conference on Information Acquisition</title><addtitle>ICIA</addtitle><description>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</description><subject>Communication system traffic control</subject><subject>Fuzzy control</subject><subject>Fuzzy neural network model</subject><subject>Fuzzy neural networks</subject><subject>Neural networks</subject><subject>Partitioning algorithms</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real time systems</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Traffic flow</subject><isbn>9781424405282</isbn><isbn>1424405289</isbn><isbn>1424405297</isbn><isbn>9781424405299</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLw0AUhUdEUGv2gpv5A4n3ziPTWYZgbKA-FnVdxuQOjsYmTFJK--sNqGfznW9z4DB2i5Ahgr2vy7rIBECeSdBWyDN2jUooBVpYc84Sa5b_vhSXLBnHT5gjrUaRX7Gi2p9OR_5M--i6GdOhj1_8qW-p48UwdIFaHnZ8-iC-ic770PCq6w_8NVIbmin0uxt24V03UvLHBXurHjblKl2_PNZlsU4DGj2l3je5koTOSi-RUDkl0CBQaxygndu7UNJJLXMy0rTW68YL7xVgDogkF-zudzcQ0XaI4dvF41bBfFDn8gcw_0ka</recordid><startdate>200608</startdate><enddate>200608</enddate><creator>Gang Tong</creator><creator>Chunling Fan</creator><creator>Fengying Cui</creator><creator>Xiangzhong Meng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200608</creationdate><title>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</title><author>Gang Tong ; Chunling Fan ; Fengying Cui ; Xiangzhong Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ffc643e1a93f31e14a421710ed7a019710b243a3536e737d9f5cf2ff4016011e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Communication system traffic control</topic><topic>Fuzzy control</topic><topic>Fuzzy neural network model</topic><topic>Fuzzy neural networks</topic><topic>Neural networks</topic><topic>Partitioning algorithms</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real time systems</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Traffic flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Gang Tong</creatorcontrib><creatorcontrib>Chunling Fan</creatorcontrib><creatorcontrib>Fengying Cui</creatorcontrib><creatorcontrib>Xiangzhong Meng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gang Tong</au><au>Chunling Fan</au><au>Fengying Cui</au><au>Xiangzhong Meng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy Neural Network Model Applied in the Traffic Flow Prediction</atitle><btitle>2006 IEEE International Conference on Information Acquisition</btitle><stitle>ICIA</stitle><date>2006-08</date><risdate>2006</risdate><spage>1229</spage><epage>1233</epage><pages>1229-1233</pages><isbn>9781424405282</isbn><isbn>1424405289</isbn><eisbn>1424405297</eisbn><eisbn>9781424405299</eisbn><abstract>The paper proposes a fuzzy neural network model (FNNM) strategy for predicting the traffic flow of real time traffic control systems. The proposed model is composed of two modular. One is a fuzzy network (FN), which is used for fuzzy clustering. Each cluster represents one kind of specific traffic pattern. The other is a neural network (NN), which is one-layer network and is used for partitioning the relationship of input and output vector. And the FN module supervises the learning of the NN. That is, the features of the traffic samples are employed to guide the training of the NN. Moreover, an online iterative predictive algorithm is presented in this paper to predict the traffic flow according to the sampled data of the upstream cross roads. Finally, the real sampled traffic flow data is employed to validate the proposed method. Results show that the proposed traffic flow prediction strategy based on fuzzy neural network model is feasible and effective</abstract><pub>IEEE</pub><doi>10.1109/ICIA.2006.305923</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424405282
ispartof 2006 IEEE International Conference on Information Acquisition, 2006, p.1229-1233
issn
language eng
recordid cdi_ieee_primary_4097856
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communication system traffic control
Fuzzy control
Fuzzy neural network model
Fuzzy neural networks
Neural networks
Partitioning algorithms
Prediction
Prediction algorithms
Predictive models
Real time systems
Telecommunication traffic
Traffic control
Traffic flow
title Fuzzy Neural Network Model Applied in the Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20Neural%20Network%20Model%20Applied%20in%20the%20Traffic%20Flow%20Prediction&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Information%20Acquisition&rft.au=Gang%20Tong&rft.date=2006-08&rft.spage=1229&rft.epage=1233&rft.pages=1229-1233&rft.isbn=9781424405282&rft.isbn_list=1424405289&rft_id=info:doi/10.1109/ICIA.2006.305923&rft_dat=%3Cieee_6IE%3E4097856%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424405297&rft.eisbn_list=9781424405299&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4097856&rfr_iscdi=true