A Neural Net Branch Predictor to Reduce Power

We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sethuram, R., Khan, O.I., Venkatanarayanan, H.V., Bushnell, M.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue
container_start_page 679
container_title
container_volume
creator Sethuram, R.
Khan, O.I.
Venkatanarayanan, H.V.
Bushnell, M.L.
description We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.
doi_str_mv 10.1109/VLSID.2007.14
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4092120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4092120</ieee_id><sourcerecordid>4092120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a4f8e77ad5093d5a6f91707673265288438d40fbf79f49a44fc408edc9a39cf03</originalsourceid><addsrcrecordid>eNotzstKAzEUgOFgFZxWl67c5AUynlwmyVnWeisMWrS4LTE5wZHqSGaK-PYW7Orb_fyMXUiopQS8em1flje1AnC1NEesUtqDsKj0hE3BWWyUswqOWSXBaoHWulM2HYYPAPANuIqJOX-kXQnbPSO_LuErvvNVodTFsS987PkzpV0kvup_qJyxkxy2A50fnLH13e168SDap_vlYt6KDmEUwWRPzoXUAOrUBJtRuv2N08o2ynujfTKQ37LDbDAYk6MBTyli0Bgz6Bm7_M92RLT5Lt1nKL8bA6ikAv0HNb9BXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Neural Net Branch Predictor to Reduce Power</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</creator><creatorcontrib>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</creatorcontrib><description>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</description><identifier>ISSN: 1063-9667</identifier><identifier>ISBN: 0769527620</identifier><identifier>ISBN: 9780769527628</identifier><identifier>EISSN: 2380-6923</identifier><identifier>DOI: 10.1109/VLSID.2007.14</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; Computer networks ; Costs ; Energy consumption ; Hardware ; History ; Neural networks ; Power dissipation ; Power engineering and energy ; Power engineering computing</subject><ispartof>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), 2007, p.679-684</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4092120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4092120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sethuram, R.</creatorcontrib><creatorcontrib>Khan, O.I.</creatorcontrib><creatorcontrib>Venkatanarayanan, H.V.</creatorcontrib><creatorcontrib>Bushnell, M.L.</creatorcontrib><title>A Neural Net Branch Predictor to Reduce Power</title><title>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07)</title><addtitle>VLSID</addtitle><description>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</description><subject>Clocks</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Energy consumption</subject><subject>Hardware</subject><subject>History</subject><subject>Neural networks</subject><subject>Power dissipation</subject><subject>Power engineering and energy</subject><subject>Power engineering computing</subject><issn>1063-9667</issn><issn>2380-6923</issn><isbn>0769527620</isbn><isbn>9780769527628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzstKAzEUgOFgFZxWl67c5AUynlwmyVnWeisMWrS4LTE5wZHqSGaK-PYW7Orb_fyMXUiopQS8em1flje1AnC1NEesUtqDsKj0hE3BWWyUswqOWSXBaoHWulM2HYYPAPANuIqJOX-kXQnbPSO_LuErvvNVodTFsS987PkzpV0kvup_qJyxkxy2A50fnLH13e168SDap_vlYt6KDmEUwWRPzoXUAOrUBJtRuv2N08o2ynujfTKQ37LDbDAYk6MBTyli0Bgz6Bm7_M92RLT5Lt1nKL8bA6ikAv0HNb9BXQ</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Sethuram, R.</creator><creator>Khan, O.I.</creator><creator>Venkatanarayanan, H.V.</creator><creator>Bushnell, M.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200701</creationdate><title>A Neural Net Branch Predictor to Reduce Power</title><author>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a4f8e77ad5093d5a6f91707673265288438d40fbf79f49a44fc408edc9a39cf03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clocks</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Energy consumption</topic><topic>Hardware</topic><topic>History</topic><topic>Neural networks</topic><topic>Power dissipation</topic><topic>Power engineering and energy</topic><topic>Power engineering computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sethuram, R.</creatorcontrib><creatorcontrib>Khan, O.I.</creatorcontrib><creatorcontrib>Venkatanarayanan, H.V.</creatorcontrib><creatorcontrib>Bushnell, M.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sethuram, R.</au><au>Khan, O.I.</au><au>Venkatanarayanan, H.V.</au><au>Bushnell, M.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Neural Net Branch Predictor to Reduce Power</atitle><btitle>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07)</btitle><stitle>VLSID</stitle><date>2007-01</date><risdate>2007</risdate><spage>679</spage><epage>684</epage><pages>679-684</pages><issn>1063-9667</issn><eissn>2380-6923</eissn><isbn>0769527620</isbn><isbn>9780769527628</isbn><abstract>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</abstract><pub>IEEE</pub><doi>10.1109/VLSID.2007.14</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-9667
ispartof 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), 2007, p.679-684
issn 1063-9667
2380-6923
language eng
recordid cdi_ieee_primary_4092120
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clocks
Computer networks
Costs
Energy consumption
Hardware
History
Neural networks
Power dissipation
Power engineering and energy
Power engineering computing
title A Neural Net Branch Predictor to Reduce Power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Neural%20Net%20Branch%20Predictor%20to%20Reduce%20Power&rft.btitle=20th%20International%20Conference%20on%20VLSI%20Design%20held%20jointly%20with%206th%20International%20Conference%20on%20Embedded%20Systems%20(VLSID'07)&rft.au=Sethuram,%20R.&rft.date=2007-01&rft.spage=679&rft.epage=684&rft.pages=679-684&rft.issn=1063-9667&rft.eissn=2380-6923&rft.isbn=0769527620&rft.isbn_list=9780769527628&rft_id=info:doi/10.1109/VLSID.2007.14&rft_dat=%3Cieee_6IE%3E4092120%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4092120&rfr_iscdi=true