A Neural Net Branch Predictor to Reduce Power
We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based ha...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | |
container_start_page | 679 |
container_title | |
container_volume | |
creator | Sethuram, R. Khan, O.I. Venkatanarayanan, H.V. Bushnell, M.L. |
description | We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs. |
doi_str_mv | 10.1109/VLSID.2007.14 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4092120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4092120</ieee_id><sourcerecordid>4092120</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a4f8e77ad5093d5a6f91707673265288438d40fbf79f49a44fc408edc9a39cf03</originalsourceid><addsrcrecordid>eNotzstKAzEUgOFgFZxWl67c5AUynlwmyVnWeisMWrS4LTE5wZHqSGaK-PYW7Orb_fyMXUiopQS8em1flje1AnC1NEesUtqDsKj0hE3BWWyUswqOWSXBaoHWulM2HYYPAPANuIqJOX-kXQnbPSO_LuErvvNVodTFsS987PkzpV0kvup_qJyxkxy2A50fnLH13e168SDap_vlYt6KDmEUwWRPzoXUAOrUBJtRuv2N08o2ynujfTKQ37LDbDAYk6MBTyli0Bgz6Bm7_M92RLT5Lt1nKL8bA6ikAv0HNb9BXQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Neural Net Branch Predictor to Reduce Power</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</creator><creatorcontrib>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</creatorcontrib><description>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</description><identifier>ISSN: 1063-9667</identifier><identifier>ISBN: 0769527620</identifier><identifier>ISBN: 9780769527628</identifier><identifier>EISSN: 2380-6923</identifier><identifier>DOI: 10.1109/VLSID.2007.14</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; Computer networks ; Costs ; Energy consumption ; Hardware ; History ; Neural networks ; Power dissipation ; Power engineering and energy ; Power engineering computing</subject><ispartof>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), 2007, p.679-684</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4092120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4092120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sethuram, R.</creatorcontrib><creatorcontrib>Khan, O.I.</creatorcontrib><creatorcontrib>Venkatanarayanan, H.V.</creatorcontrib><creatorcontrib>Bushnell, M.L.</creatorcontrib><title>A Neural Net Branch Predictor to Reduce Power</title><title>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07)</title><addtitle>VLSID</addtitle><description>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</description><subject>Clocks</subject><subject>Computer networks</subject><subject>Costs</subject><subject>Energy consumption</subject><subject>Hardware</subject><subject>History</subject><subject>Neural networks</subject><subject>Power dissipation</subject><subject>Power engineering and energy</subject><subject>Power engineering computing</subject><issn>1063-9667</issn><issn>2380-6923</issn><isbn>0769527620</isbn><isbn>9780769527628</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotzstKAzEUgOFgFZxWl67c5AUynlwmyVnWeisMWrS4LTE5wZHqSGaK-PYW7Orb_fyMXUiopQS8em1flje1AnC1NEesUtqDsKj0hE3BWWyUswqOWSXBaoHWulM2HYYPAPANuIqJOX-kXQnbPSO_LuErvvNVodTFsS987PkzpV0kvup_qJyxkxy2A50fnLH13e168SDap_vlYt6KDmEUwWRPzoXUAOrUBJtRuv2N08o2ynujfTKQ37LDbDAYk6MBTyli0Bgz6Bm7_M92RLT5Lt1nKL8bA6ikAv0HNb9BXQ</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Sethuram, R.</creator><creator>Khan, O.I.</creator><creator>Venkatanarayanan, H.V.</creator><creator>Bushnell, M.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200701</creationdate><title>A Neural Net Branch Predictor to Reduce Power</title><author>Sethuram, R. ; Khan, O.I. ; Venkatanarayanan, H.V. ; Bushnell, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a4f8e77ad5093d5a6f91707673265288438d40fbf79f49a44fc408edc9a39cf03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Clocks</topic><topic>Computer networks</topic><topic>Costs</topic><topic>Energy consumption</topic><topic>Hardware</topic><topic>History</topic><topic>Neural networks</topic><topic>Power dissipation</topic><topic>Power engineering and energy</topic><topic>Power engineering computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Sethuram, R.</creatorcontrib><creatorcontrib>Khan, O.I.</creatorcontrib><creatorcontrib>Venkatanarayanan, H.V.</creatorcontrib><creatorcontrib>Bushnell, M.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sethuram, R.</au><au>Khan, O.I.</au><au>Venkatanarayanan, H.V.</au><au>Bushnell, M.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Neural Net Branch Predictor to Reduce Power</atitle><btitle>20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07)</btitle><stitle>VLSID</stitle><date>2007-01</date><risdate>2007</risdate><spage>679</spage><epage>684</epage><pages>679-684</pages><issn>1063-9667</issn><eissn>2380-6923</eissn><isbn>0769527620</isbn><isbn>9780769527628</isbn><abstract>We present a power-aware neural network (PAN) branch prediction (BP) scheme for dynamic branch prediction, and schemes to incorporate anti-aliasing techniques into the neural branch predictor. We avoid incorrectly falling into segments of code that consume much power. By adding lookup table-based hardware, we estimate the power dissipated in the entire processor between successive branches. We consider a processor with a neural net branch predictor and use aggressive training on the neural network (NN) to severely penalize incorrect branch predictions that cause the processor to waste power. Our scheme dynamically learns to dissipate less power during successive calls to a particular branch instruction. Hence, our approach is different from all prior approaches that reduce miss-prediction or use hardware techniques (clock gating, banking) to reduce power dissipation. We also incorporate the conventional anti-aliasing techniques, such as GShare [1] and bimodal [2], into a NN-based BP, implemented in the SimpleScalar v2.0 [3] simulator. This is the first neural net branch predictor that reduces CPU power. Our new technique reduced power consumption by 11.6% on average for the SPEC2000 integer benchmark programs.</abstract><pub>IEEE</pub><doi>10.1109/VLSID.2007.14</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-9667 |
ispartof | 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07), 2007, p.679-684 |
issn | 1063-9667 2380-6923 |
language | eng |
recordid | cdi_ieee_primary_4092120 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clocks Computer networks Costs Energy consumption Hardware History Neural networks Power dissipation Power engineering and energy Power engineering computing |
title | A Neural Net Branch Predictor to Reduce Power |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Neural%20Net%20Branch%20Predictor%20to%20Reduce%20Power&rft.btitle=20th%20International%20Conference%20on%20VLSI%20Design%20held%20jointly%20with%206th%20International%20Conference%20on%20Embedded%20Systems%20(VLSID'07)&rft.au=Sethuram,%20R.&rft.date=2007-01&rft.spage=679&rft.epage=684&rft.pages=679-684&rft.issn=1063-9667&rft.eissn=2380-6923&rft.isbn=0769527620&rft.isbn_list=9780769527628&rft_id=info:doi/10.1109/VLSID.2007.14&rft_dat=%3Cieee_6IE%3E4092120%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4092120&rfr_iscdi=true |