Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems

This short paper shows how the sampled output of a dyadic-invariant linear system with a given sequency-domain transfer function, in response to a sampled input, can be determined by 1) a term-wise multiplication of the sampled transfer function and the discrete Walsh transform of the sampled input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 1974-05, Vol.EMC-16 (2), p.136-139
Hauptverfasser: Cheng, David K., Liu, James J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 136
container_title IEEE transactions on electromagnetic compatibility
container_volume EMC-16
creator Cheng, David K.
Liu, James J.
description This short paper shows how the sampled output of a dyadic-invariant linear system with a given sequency-domain transfer function, in response to a sampled input, can be determined by 1) a term-wise multiplication of the sampled transfer function and the discrete Walsh transform of the sampled input function, followed by an inverse Walsh transform, or 2) a discrete dyadic convolution of the sampled impulse response and the sampled input directly in the time domain. Functions in both time and sequency domains are represented by column matrices, and discrete Walsh transformation is effected simply by the multiplication with a Walsh matrix. An example is included to illustrate both procedures. The validity of the solutions is further verified by showing that the governing dyadic differential equation of the system is satisfied.
doi_str_mv 10.1109/TEMC.1974.303345
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_4090828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4090828</ieee_id><sourcerecordid>10_1109_TEMC_1974_303345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-280dffbcbe685ac9cd9edbcbd3e28bd8a5db3abd195a81ce2fedea8c6cac1c283</originalsourceid><addsrcrecordid>eNo9j8FKxDAURYMoWEf3gpv-QMakadpk4WLozOjAiAsruiuvyQtWpq0kRejf21Jxdblwz4VDyC1na86Zvi93z8Wa6zxdCyZEKs9IxKVUlKv845xEjHFFtcjlJbkK4WuqqUxERB7e4RQ-aemhC673bbzp4DSGJsS9i7dNMB4HjLcj2MbQQ_cDvoFuiF_HMGAbrsmFm3i8-csVedvvyuKJHl8eD8XmSE2S8YEmilnnalNjpiQYbaxGO1UrMFG1VSBtLaC2XEtQ3GDi0CIokxkw3CRKrAhbfo3vQ_Doqm_ftODHirNq1q9m_WrWrxb9CblbkAYR_-cp00xNh7_-qlk7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, David K. ; Liu, James J.</creator><creatorcontrib>Cheng, David K. ; Liu, James J.</creatorcontrib><description>This short paper shows how the sampled output of a dyadic-invariant linear system with a given sequency-domain transfer function, in response to a sampled input, can be determined by 1) a term-wise multiplication of the sampled transfer function and the discrete Walsh transform of the sampled input function, followed by an inverse Walsh transform, or 2) a discrete dyadic convolution of the sampled impulse response and the sampled input directly in the time domain. Functions in both time and sequency domains are represented by column matrices, and discrete Walsh transformation is effected simply by the multiplication with a Walsh matrix. An example is included to illustrate both procedures. The validity of the solutions is further verified by showing that the governing dyadic differential equation of the system is satisfied.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.1974.303345</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>IEEE transactions on electromagnetic compatibility, 1974-05, Vol.EMC-16 (2), p.136-139</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-280dffbcbe685ac9cd9edbcbd3e28bd8a5db3abd195a81ce2fedea8c6cac1c283</citedby><cites>FETCH-LOGICAL-c261t-280dffbcbe685ac9cd9edbcbd3e28bd8a5db3abd195a81ce2fedea8c6cac1c283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4090828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4090828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, David K.</creatorcontrib><creatorcontrib>Liu, James J.</creatorcontrib><title>Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This short paper shows how the sampled output of a dyadic-invariant linear system with a given sequency-domain transfer function, in response to a sampled input, can be determined by 1) a term-wise multiplication of the sampled transfer function and the discrete Walsh transform of the sampled input function, followed by an inverse Walsh transform, or 2) a discrete dyadic convolution of the sampled impulse response and the sampled input directly in the time domain. Functions in both time and sequency domains are represented by column matrices, and discrete Walsh transformation is effected simply by the multiplication with a Walsh matrix. An example is included to illustrate both procedures. The validity of the solutions is further verified by showing that the governing dyadic differential equation of the system is satisfied.</description><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKxDAURYMoWEf3gpv-QMakadpk4WLozOjAiAsruiuvyQtWpq0kRejf21Jxdblwz4VDyC1na86Zvi93z8Wa6zxdCyZEKs9IxKVUlKv845xEjHFFtcjlJbkK4WuqqUxERB7e4RQ-aemhC673bbzp4DSGJsS9i7dNMB4HjLcj2MbQQ_cDvoFuiF_HMGAbrsmFm3i8-csVedvvyuKJHl8eD8XmSE2S8YEmilnnalNjpiQYbaxGO1UrMFG1VSBtLaC2XEtQ3GDi0CIokxkw3CRKrAhbfo3vQ_Doqm_ftODHirNq1q9m_WrWrxb9CblbkAYR_-cp00xNh7_-qlk7</recordid><startdate>197405</startdate><enddate>197405</enddate><creator>Cheng, David K.</creator><creator>Liu, James J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197405</creationdate><title>Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems</title><author>Cheng, David K. ; Liu, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-280dffbcbe685ac9cd9edbcbd3e28bd8a5db3abd195a81ce2fedea8c6cac1c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, David K.</creatorcontrib><creatorcontrib>Liu, James J.</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, David K.</au><au>Liu, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>1974-05</date><risdate>1974</risdate><volume>EMC-16</volume><issue>2</issue><spage>136</spage><epage>139</epage><pages>136-139</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This short paper shows how the sampled output of a dyadic-invariant linear system with a given sequency-domain transfer function, in response to a sampled input, can be determined by 1) a term-wise multiplication of the sampled transfer function and the discrete Walsh transform of the sampled input function, followed by an inverse Walsh transform, or 2) a discrete dyadic convolution of the sampled impulse response and the sampled input directly in the time domain. Functions in both time and sequency domains are represented by column matrices, and discrete Walsh transformation is effected simply by the multiplication with a Walsh matrix. An example is included to illustrate both procedures. The validity of the solutions is further verified by showing that the governing dyadic differential equation of the system is satisfied.</abstract><pub>IEEE</pub><doi>10.1109/TEMC.1974.303345</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 1974-05, Vol.EMC-16 (2), p.136-139
issn 0018-9375
1558-187X
language eng
recordid cdi_ieee_primary_4090828
source IEEE Electronic Library (IEL)
title Walsh-Transform Analysis of Discrete Dyadic-Invariant Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Walsh-Transform%20Analysis%20of%20Discrete%20Dyadic-Invariant%20Systems&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Cheng,%20David%20K.&rft.date=1974-05&rft.volume=EMC-16&rft.issue=2&rft.spage=136&rft.epage=139&rft.pages=136-139&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.1974.303345&rft_dat=%3Ccrossref_RIE%3E10_1109_TEMC_1974_303345%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4090828&rfr_iscdi=true