Confidence intervals for simulations using Reed-Solomon codes
The minimum length confidence interval (CI) for the decoded binary symbol error probability is considered for a Monte Carlo communication system simulation which includes a Reed-Solomon (RS) code. The binary errors at the demodulator output are assumed to be independent with probability P/sub ch/, a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 957 vol.3 |
---|---|
container_issue | |
container_start_page | 953 |
container_title | |
container_volume | 3 |
creator | Ebel, W.J. Ingels, F.M. |
description | The minimum length confidence interval (CI) for the decoded binary symbol error probability is considered for a Monte Carlo communication system simulation which includes a Reed-Solomon (RS) code. The binary errors at the demodulator output are assumed to be independent with probability P/sub ch/, and the RS decoder is assumed to be an errors-only, incomplete (bounded distance) decoder with decoded bit error probability P/sub c,b/. Let z denote the number of codewords sent through the channel for a simulation trial and let random variable (RV) N/sub z/ be the number of errors observed to occur at the RS decoder output. To compute the CI, the discrete probability density function (pdf) .< > |
doi_str_mv | 10.1109/MILCOM.1993.408680 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_408680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>408680</ieee_id><sourcerecordid>25957899</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b44f9ab893d5ed36699064c0e7db659ad76266acf53215244af6012db26d3cb23</originalsourceid><addsrcrecordid>eNotkM1KxDAYRQMiqOO8wKy6ctf6NX9NFi6kqDPQYcCfdUmbrxJpk7FpBd_eQr2buzkcuJeQXQ5ZnoO-Px6q8nTMcq1ZxkFJBRfkBgoFDLRgxRXZxvgFSxQFJfg1eSiD75xF32Li_ITjj-lj0oUxiW6YezO54GMyR-c_k1dEm76FPgzBJ22wGG_JZbfwuP3vDfl4fnov92l1ejmUj1XqKLApbTjvtGmUZlagZVJqDZK3gIVtpNDGFpJKadpOMJoLyrnpJOTUNlRa1jaUbcjd6j2P4XvGONWDiy32vfEY5lhToUWhltEbsltBh4j1eXSDGX_r9Qn2B9lpVEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>25957899</pqid></control><display><type>conference_proceeding</type><title>Confidence intervals for simulations using Reed-Solomon codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ebel, W.J. ; Ingels, F.M.</creator><creatorcontrib>Ebel, W.J. ; Ingels, F.M.</creatorcontrib><description>The minimum length confidence interval (CI) for the decoded binary symbol error probability is considered for a Monte Carlo communication system simulation which includes a Reed-Solomon (RS) code. The binary errors at the demodulator output are assumed to be independent with probability P/sub ch/, and the RS decoder is assumed to be an errors-only, incomplete (bounded distance) decoder with decoded bit error probability P/sub c,b/. Let z denote the number of codewords sent through the channel for a simulation trial and let random variable (RV) N/sub z/ be the number of errors observed to occur at the RS decoder output. To compute the CI, the discrete probability density function (pdf) .< ></description><identifier>ISBN: 0780309537</identifier><identifier>ISBN: 9780780309531</identifier><identifier>DOI: 10.1109/MILCOM.1993.408680</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Decoding ; Demodulation ; Error probability ; Monte Carlo methods ; Probability density function ; Random variables ; Reed-Solomon codes ; Stochastic systems</subject><ispartof>Milcom 93: Conference Record Volume 1 of 3/October 11-14, 1993 Boston, Massachusetts/93Ch32607 (Ieee Military Communications Conference), 1993, Vol.3, p.953-957 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/408680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4050,4051,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/408680$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ebel, W.J.</creatorcontrib><creatorcontrib>Ingels, F.M.</creatorcontrib><title>Confidence intervals for simulations using Reed-Solomon codes</title><title>Milcom 93: Conference Record Volume 1 of 3/October 11-14, 1993 Boston, Massachusetts/93Ch32607 (Ieee Military Communications Conference)</title><addtitle>MILCOM</addtitle><description>The minimum length confidence interval (CI) for the decoded binary symbol error probability is considered for a Monte Carlo communication system simulation which includes a Reed-Solomon (RS) code. The binary errors at the demodulator output are assumed to be independent with probability P/sub ch/, and the RS decoder is assumed to be an errors-only, incomplete (bounded distance) decoder with decoded bit error probability P/sub c,b/. Let z denote the number of codewords sent through the channel for a simulation trial and let random variable (RV) N/sub z/ be the number of errors observed to occur at the RS decoder output. To compute the CI, the discrete probability density function (pdf) .< ></description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Decoding</subject><subject>Demodulation</subject><subject>Error probability</subject><subject>Monte Carlo methods</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reed-Solomon codes</subject><subject>Stochastic systems</subject><isbn>0780309537</isbn><isbn>9780780309531</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1KxDAYRQMiqOO8wKy6ctf6NX9NFi6kqDPQYcCfdUmbrxJpk7FpBd_eQr2buzkcuJeQXQ5ZnoO-Px6q8nTMcq1ZxkFJBRfkBgoFDLRgxRXZxvgFSxQFJfg1eSiD75xF32Li_ITjj-lj0oUxiW6YezO54GMyR-c_k1dEm76FPgzBJ22wGG_JZbfwuP3vDfl4fnov92l1ejmUj1XqKLApbTjvtGmUZlagZVJqDZK3gIVtpNDGFpJKadpOMJoLyrnpJOTUNlRa1jaUbcjd6j2P4XvGONWDiy32vfEY5lhToUWhltEbsltBh4j1eXSDGX_r9Qn2B9lpVEQ</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Ebel, W.J.</creator><creator>Ingels, F.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Confidence intervals for simulations using Reed-Solomon codes</title><author>Ebel, W.J. ; Ingels, F.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b44f9ab893d5ed36699064c0e7db659ad76266acf53215244af6012db26d3cb23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Decoding</topic><topic>Demodulation</topic><topic>Error probability</topic><topic>Monte Carlo methods</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reed-Solomon codes</topic><topic>Stochastic systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ebel, W.J.</creatorcontrib><creatorcontrib>Ingels, F.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ebel, W.J.</au><au>Ingels, F.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Confidence intervals for simulations using Reed-Solomon codes</atitle><btitle>Milcom 93: Conference Record Volume 1 of 3/October 11-14, 1993 Boston, Massachusetts/93Ch32607 (Ieee Military Communications Conference)</btitle><stitle>MILCOM</stitle><date>1993</date><risdate>1993</risdate><volume>3</volume><spage>953</spage><epage>957 vol.3</epage><pages>953-957 vol.3</pages><isbn>0780309537</isbn><isbn>9780780309531</isbn><abstract>The minimum length confidence interval (CI) for the decoded binary symbol error probability is considered for a Monte Carlo communication system simulation which includes a Reed-Solomon (RS) code. The binary errors at the demodulator output are assumed to be independent with probability P/sub ch/, and the RS decoder is assumed to be an errors-only, incomplete (bounded distance) decoder with decoded bit error probability P/sub c,b/. Let z denote the number of codewords sent through the channel for a simulation trial and let random variable (RV) N/sub z/ be the number of errors observed to occur at the RS decoder output. To compute the CI, the discrete probability density function (pdf) .< ></abstract><pub>IEEE</pub><doi>10.1109/MILCOM.1993.408680</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780309537 |
ispartof | Milcom 93: Conference Record Volume 1 of 3/October 11-14, 1993 Boston, Massachusetts/93Ch32607 (Ieee Military Communications Conference), 1993, Vol.3, p.953-957 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_408680 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Computational modeling Decoding Demodulation Error probability Monte Carlo methods Probability density function Random variables Reed-Solomon codes Stochastic systems |
title | Confidence intervals for simulations using Reed-Solomon codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Confidence%20intervals%20for%20simulations%20using%20Reed-Solomon%20codes&rft.btitle=Milcom%2093:%20Conference%20Record%20Volume%201%20of%203/October%2011-14,%201993%20Boston,%20Massachusetts/93Ch32607%20(Ieee%20Military%20Communications%20Conference)&rft.au=Ebel,%20W.J.&rft.date=1993&rft.volume=3&rft.spage=953&rft.epage=957%20vol.3&rft.pages=953-957%20vol.3&rft.isbn=0780309537&rft.isbn_list=9780780309531&rft_id=info:doi/10.1109/MILCOM.1993.408680&rft_dat=%3Cproquest_6IE%3E25957899%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25957899&rft_id=info:pmid/&rft_ieee_id=408680&rfr_iscdi=true |