Fusion & Information Acquisition

There are multiple types of information which can be extracted from sensor actions and which affect the fusion of sensor data. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hintz, K.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Hintz, K.J.
description There are multiple types of information which can be extracted from sensor actions and which affect the fusion of sensor data. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fact and can be used to change the quality of fusion by, for example, selecting different state estimator process models. The next level of improving fusion is by actively determining which information for a sensor system to obtain and therefore taking a proactive roll in the fusion process, rather than simply performing the best fusion of data that is provided
doi_str_mv 10.1109/ICIF.2006.301788
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4086074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4086074</ieee_id><sourcerecordid>4086074</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-748c9c779984c8be0b9e7ea926432aeb533290109cffa94feb2dcea71c0aa0ff3</originalsourceid><addsrcrecordid>eNotjj1PwzAURV0hpELJjsSSiS3h2X7-eGMVNRCpEkv3yjHPkhFtIW4H_j2t6F3uucvRFeJRQisl0MvQDX2rAGyrQTrvZ6Ii54Gckh7RmhtxL1EhAhlt5qIq5RPO0WSk9Xei7k8lH_b1cz3s02HaheNlLePPKZd84Qdxm8JX4eraC7HpV5vurVm_vw7dct1kgmPj0EeKzhF5jH5kGIkdB1IWtQo8Gq0VwflvTCkQJh7VR-TgZIQQICW9EE__2szM2-8p78L0u0XwFhzqPwKAPo4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fusion &amp; Information Acquisition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hintz, K.J.</creator><creatorcontrib>Hintz, K.J.</creatorcontrib><description>There are multiple types of information which can be extracted from sensor actions and which affect the fusion of sensor data. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fact and can be used to change the quality of fusion by, for example, selecting different state estimator process models. The next level of improving fusion is by actively determining which information for a sensor system to obtain and therefore taking a proactive roll in the fusion process, rather than simply performing the best fusion of data that is provided</description><identifier>ISBN: 1424409535</identifier><identifier>ISBN: 9781424409532</identifier><identifier>EISBN: 9780972184465</identifier><identifier>EISBN: 0972184465</identifier><identifier>DOI: 10.1109/ICIF.2006.301788</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Kinematics ; Predictive models ; Random variables ; resource allocation ; Resource management ; Sensor fusion ; sensor information ; Sensor systems ; situation information ; State estimation ; Target tracking ; Uncertainty</subject><ispartof>2006 9th International Conference on Information Fusion, 2006, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4086074$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4086074$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hintz, K.J.</creatorcontrib><title>Fusion &amp; Information Acquisition</title><title>2006 9th International Conference on Information Fusion</title><addtitle>ICIF</addtitle><description>There are multiple types of information which can be extracted from sensor actions and which affect the fusion of sensor data. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fact and can be used to change the quality of fusion by, for example, selecting different state estimator process models. The next level of improving fusion is by actively determining which information for a sensor system to obtain and therefore taking a proactive roll in the fusion process, rather than simply performing the best fusion of data that is provided</description><subject>Data mining</subject><subject>Kinematics</subject><subject>Predictive models</subject><subject>Random variables</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Sensor fusion</subject><subject>sensor information</subject><subject>Sensor systems</subject><subject>situation information</subject><subject>State estimation</subject><subject>Target tracking</subject><subject>Uncertainty</subject><isbn>1424409535</isbn><isbn>9781424409532</isbn><isbn>9780972184465</isbn><isbn>0972184465</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjj1PwzAURV0hpELJjsSSiS3h2X7-eGMVNRCpEkv3yjHPkhFtIW4H_j2t6F3uucvRFeJRQisl0MvQDX2rAGyrQTrvZ6Ii54Gckh7RmhtxL1EhAhlt5qIq5RPO0WSk9Xei7k8lH_b1cz3s02HaheNlLePPKZd84Qdxm8JX4eraC7HpV5vurVm_vw7dct1kgmPj0EeKzhF5jH5kGIkdB1IWtQo8Gq0VwflvTCkQJh7VR-TgZIQQICW9EE__2szM2-8p78L0u0XwFhzqPwKAPo4</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Hintz, K.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200607</creationdate><title>Fusion &amp; Information Acquisition</title><author>Hintz, K.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-748c9c779984c8be0b9e7ea926432aeb533290109cffa94feb2dcea71c0aa0ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Data mining</topic><topic>Kinematics</topic><topic>Predictive models</topic><topic>Random variables</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Sensor fusion</topic><topic>sensor information</topic><topic>Sensor systems</topic><topic>situation information</topic><topic>State estimation</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hintz, K.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hintz, K.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fusion &amp; Information Acquisition</atitle><btitle>2006 9th International Conference on Information Fusion</btitle><stitle>ICIF</stitle><date>2006-07</date><risdate>2006</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><isbn>1424409535</isbn><isbn>9781424409532</isbn><eisbn>9780972184465</eisbn><eisbn>0972184465</eisbn><abstract>There are multiple types of information which can be extracted from sensor actions and which affect the fusion of sensor data. Some information can be anticipated in the form of predicting which information will maximally reduce our uncertainty about a random variable, and some of it is after-the-fact and can be used to change the quality of fusion by, for example, selecting different state estimator process models. The next level of improving fusion is by actively determining which information for a sensor system to obtain and therefore taking a proactive roll in the fusion process, rather than simply performing the best fusion of data that is provided</abstract><pub>IEEE</pub><doi>10.1109/ICIF.2006.301788</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424409535
ispartof 2006 9th International Conference on Information Fusion, 2006, p.1-2
issn
language eng
recordid cdi_ieee_primary_4086074
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Kinematics
Predictive models
Random variables
resource allocation
Resource management
Sensor fusion
sensor information
Sensor systems
situation information
State estimation
Target tracking
Uncertainty
title Fusion & Information Acquisition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fusion%20&%20Information%20Acquisition&rft.btitle=2006%209th%20International%20Conference%20on%20Information%20Fusion&rft.au=Hintz,%20K.J.&rft.date=2006-07&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.isbn=1424409535&rft.isbn_list=9781424409532&rft_id=info:doi/10.1109/ICIF.2006.301788&rft_dat=%3Cieee_6IE%3E4086074%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780972184465&rft.eisbn_list=0972184465&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4086074&rfr_iscdi=true