Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching
The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2007-02, Vol.23 (1), p.151-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 151 |
container_title | IEEE transactions on robotics |
container_volume | 23 |
creator | Yershova, A. LaValle, S.M. |
description | The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees |
doi_str_mv | 10.1109/TRO.2006.886840 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4084578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4084578</ieee_id><sourcerecordid>34430853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhSMEEuuZA5cIieWSMhM7zuRYITapFMRytlzHbo3SBOwUqf8eV0UgceDksed7ozd-SXKIMECE6uLl6WGQA4gBkSAOG8kOVhwz4II2Y10Uecagou1kN4Q3gJxXwHaS0d383Xefrp2m913vujZ7bFTbru7DZtp518_mIZ0s0ytrnXam7dOxUd6EPhsbN51NOp8-xwc9i5L9ZMuqJpiD73Mveb2-erm8zUYPN3eXw1GmOfI-Q8CaW1GTZmVtuFWFUVTWvChJWIHGKuAkmBC1QDLIS0KRTzQnVVjFENhecraeG61_LKIXOXdBmyY6N90iyLiZyKliGMnTf0nGOQMqWATP_wVRlMjyEoSI6PEf9K1b-DYuLHPAogRiPEIXa0j7LgRvrHz3bq78UiLIVV4y5iVXecl1XlFx8j1WBa0a61WrXfiVUQFVmVeRO1pzzhjz0-ZAq_9jXwJVnA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201570834</pqid></control><display><type>article</type><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><source>IEEE Electronic Library (IEL)</source><creator>Yershova, A. ; LaValle, S.M.</creator><creatorcontrib>Yershova, A. ; LaValle, S.M.</creatorcontrib><description>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2006.886840</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Configuration space ; Control theory. Systems ; Costs ; Data structures ; Euclidean space ; Exact sciences and technology ; Extraterrestrial measurements ; kd-trees ; Learning theory ; Metric space ; Motion control ; Motion planning ; nearest-neighbor (NN) searching ; Neural networks ; Packages ; Packaging ; Path planning ; Pattern recognition ; probabilistic roadmaps (PRMs) ; Queries ; rapidly exploring random trees (RRTs) ; Robotics ; Robots ; sampling-based motion planning ; Searching ; Topology ; Tree graphs</subject><ispartof>IEEE transactions on robotics, 2007-02, Vol.23 (1), p.151-157</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</citedby><cites>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4084578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4084578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18509729$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yershova, A.</creatorcontrib><creatorcontrib>LaValle, S.M.</creatorcontrib><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Configuration space</subject><subject>Control theory. Systems</subject><subject>Costs</subject><subject>Data structures</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>kd-trees</subject><subject>Learning theory</subject><subject>Metric space</subject><subject>Motion control</subject><subject>Motion planning</subject><subject>nearest-neighbor (NN) searching</subject><subject>Neural networks</subject><subject>Packages</subject><subject>Packaging</subject><subject>Path planning</subject><subject>Pattern recognition</subject><subject>probabilistic roadmaps (PRMs)</subject><subject>Queries</subject><subject>rapidly exploring random trees (RRTs)</subject><subject>Robotics</subject><subject>Robots</subject><subject>sampling-based motion planning</subject><subject>Searching</subject><subject>Topology</subject><subject>Tree graphs</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUlPwzAQhSMEEuuZA5cIieWSMhM7zuRYITapFMRytlzHbo3SBOwUqf8eV0UgceDksed7ozd-SXKIMECE6uLl6WGQA4gBkSAOG8kOVhwz4II2Y10Uecagou1kN4Q3gJxXwHaS0d383Xefrp2m913vujZ7bFTbru7DZtp518_mIZ0s0ytrnXam7dOxUd6EPhsbN51NOp8-xwc9i5L9ZMuqJpiD73Mveb2-erm8zUYPN3eXw1GmOfI-Q8CaW1GTZmVtuFWFUVTWvChJWIHGKuAkmBC1QDLIS0KRTzQnVVjFENhecraeG61_LKIXOXdBmyY6N90iyLiZyKliGMnTf0nGOQMqWATP_wVRlMjyEoSI6PEf9K1b-DYuLHPAogRiPEIXa0j7LgRvrHz3bq78UiLIVV4y5iVXecl1XlFx8j1WBa0a61WrXfiVUQFVmVeRO1pzzhjz0-ZAq_9jXwJVnA8</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Yershova, A.</creator><creator>LaValle, S.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20070201</creationdate><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><author>Yershova, A. ; LaValle, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Configuration space</topic><topic>Control theory. Systems</topic><topic>Costs</topic><topic>Data structures</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>kd-trees</topic><topic>Learning theory</topic><topic>Metric space</topic><topic>Motion control</topic><topic>Motion planning</topic><topic>nearest-neighbor (NN) searching</topic><topic>Neural networks</topic><topic>Packages</topic><topic>Packaging</topic><topic>Path planning</topic><topic>Pattern recognition</topic><topic>probabilistic roadmaps (PRMs)</topic><topic>Queries</topic><topic>rapidly exploring random trees (RRTs)</topic><topic>Robotics</topic><topic>Robots</topic><topic>sampling-based motion planning</topic><topic>Searching</topic><topic>Topology</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yershova, A.</creatorcontrib><creatorcontrib>LaValle, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yershova, A.</au><au>LaValle, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2007-02-01</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>151</spage><epage>157</epage><pages>151-157</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2006.886840</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2007-02, Vol.23 (1), p.151-157 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_4084578 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Computer science control theory systems Configuration space Control theory. Systems Costs Data structures Euclidean space Exact sciences and technology Extraterrestrial measurements kd-trees Learning theory Metric space Motion control Motion planning nearest-neighbor (NN) searching Neural networks Packages Packaging Path planning Pattern recognition probabilistic roadmaps (PRMs) Queries rapidly exploring random trees (RRTs) Robotics Robots sampling-based motion planning Searching Topology Tree graphs |
title | Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Motion-Planning%20Algorithms%20by%20Efficient%20Nearest-Neighbor%20Searching&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Yershova,%20A.&rft.date=2007-02-01&rft.volume=23&rft.issue=1&rft.spage=151&rft.epage=157&rft.pages=151-157&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2006.886840&rft_dat=%3Cproquest_RIE%3E34430853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201570834&rft_id=info:pmid/&rft_ieee_id=4084578&rfr_iscdi=true |