Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching

The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2007-02, Vol.23 (1), p.151-157
Hauptverfasser: Yershova, A., LaValle, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue 1
container_start_page 151
container_title IEEE transactions on robotics
container_volume 23
creator Yershova, A.
LaValle, S.M.
description The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees
doi_str_mv 10.1109/TRO.2006.886840
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_4084578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4084578</ieee_id><sourcerecordid>34430853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</originalsourceid><addsrcrecordid>eNp9kUlPwzAQhSMEEuuZA5cIieWSMhM7zuRYITapFMRytlzHbo3SBOwUqf8eV0UgceDksed7ozd-SXKIMECE6uLl6WGQA4gBkSAOG8kOVhwz4II2Y10Uecagou1kN4Q3gJxXwHaS0d383Xefrp2m913vujZ7bFTbru7DZtp518_mIZ0s0ytrnXam7dOxUd6EPhsbN51NOp8-xwc9i5L9ZMuqJpiD73Mveb2-erm8zUYPN3eXw1GmOfI-Q8CaW1GTZmVtuFWFUVTWvChJWIHGKuAkmBC1QDLIS0KRTzQnVVjFENhecraeG61_LKIXOXdBmyY6N90iyLiZyKliGMnTf0nGOQMqWATP_wVRlMjyEoSI6PEf9K1b-DYuLHPAogRiPEIXa0j7LgRvrHz3bq78UiLIVV4y5iVXecl1XlFx8j1WBa0a61WrXfiVUQFVmVeRO1pzzhjz0-ZAq_9jXwJVnA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201570834</pqid></control><display><type>article</type><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><source>IEEE Electronic Library (IEL)</source><creator>Yershova, A. ; LaValle, S.M.</creator><creatorcontrib>Yershova, A. ; LaValle, S.M.</creatorcontrib><description>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2006.886840</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science; control theory; systems ; Configuration space ; Control theory. Systems ; Costs ; Data structures ; Euclidean space ; Exact sciences and technology ; Extraterrestrial measurements ; kd-trees ; Learning theory ; Metric space ; Motion control ; Motion planning ; nearest-neighbor (NN) searching ; Neural networks ; Packages ; Packaging ; Path planning ; Pattern recognition ; probabilistic roadmaps (PRMs) ; Queries ; rapidly exploring random trees (RRTs) ; Robotics ; Robots ; sampling-based motion planning ; Searching ; Topology ; Tree graphs</subject><ispartof>IEEE transactions on robotics, 2007-02, Vol.23 (1), p.151-157</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</citedby><cites>FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4084578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4084578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18509729$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yershova, A.</creatorcontrib><creatorcontrib>LaValle, S.M.</creatorcontrib><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Configuration space</subject><subject>Control theory. Systems</subject><subject>Costs</subject><subject>Data structures</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Extraterrestrial measurements</subject><subject>kd-trees</subject><subject>Learning theory</subject><subject>Metric space</subject><subject>Motion control</subject><subject>Motion planning</subject><subject>nearest-neighbor (NN) searching</subject><subject>Neural networks</subject><subject>Packages</subject><subject>Packaging</subject><subject>Path planning</subject><subject>Pattern recognition</subject><subject>probabilistic roadmaps (PRMs)</subject><subject>Queries</subject><subject>rapidly exploring random trees (RRTs)</subject><subject>Robotics</subject><subject>Robots</subject><subject>sampling-based motion planning</subject><subject>Searching</subject><subject>Topology</subject><subject>Tree graphs</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUlPwzAQhSMEEuuZA5cIieWSMhM7zuRYITapFMRytlzHbo3SBOwUqf8eV0UgceDksed7ozd-SXKIMECE6uLl6WGQA4gBkSAOG8kOVhwz4II2Y10Uecagou1kN4Q3gJxXwHaS0d383Xefrp2m913vujZ7bFTbru7DZtp518_mIZ0s0ytrnXam7dOxUd6EPhsbN51NOp8-xwc9i5L9ZMuqJpiD73Mveb2-erm8zUYPN3eXw1GmOfI-Q8CaW1GTZmVtuFWFUVTWvChJWIHGKuAkmBC1QDLIS0KRTzQnVVjFENhecraeG61_LKIXOXdBmyY6N90iyLiZyKliGMnTf0nGOQMqWATP_wVRlMjyEoSI6PEf9K1b-DYuLHPAogRiPEIXa0j7LgRvrHz3bq78UiLIVV4y5iVXecl1XlFx8j1WBa0a61WrXfiVUQFVmVeRO1pzzhjz0-ZAq_9jXwJVnA8</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Yershova, A.</creator><creator>LaValle, S.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20070201</creationdate><title>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</title><author>Yershova, A. ; LaValle, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-101d4f6d8c37de4fa5ea87d45786f61efa0486366d618e1478162bc48a5fa3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Configuration space</topic><topic>Control theory. Systems</topic><topic>Costs</topic><topic>Data structures</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Extraterrestrial measurements</topic><topic>kd-trees</topic><topic>Learning theory</topic><topic>Metric space</topic><topic>Motion control</topic><topic>Motion planning</topic><topic>nearest-neighbor (NN) searching</topic><topic>Neural networks</topic><topic>Packages</topic><topic>Packaging</topic><topic>Path planning</topic><topic>Pattern recognition</topic><topic>probabilistic roadmaps (PRMs)</topic><topic>Queries</topic><topic>rapidly exploring random trees (RRTs)</topic><topic>Robotics</topic><topic>Robots</topic><topic>sampling-based motion planning</topic><topic>Searching</topic><topic>Topology</topic><topic>Tree graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yershova, A.</creatorcontrib><creatorcontrib>LaValle, S.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yershova, A.</au><au>LaValle, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2007-02-01</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>151</spage><epage>157</epage><pages>151-157</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>The cost of nearest-neighbor (NN) calls is one of the bottlenecks in the performance of sampling-based motion-planning algorithms. Therefore, it is crucial to develop efficient techniques for NN searching in configuration spaces arising in motion planning. In this paper, we present and implement an algorithm for performing NN queries in Cartesian products of R, S 1 , and RP 3 , the most common topological spaces in the context of motion planning. Our approach extends the algorithm based on kd-trees, called ANN, developed by Arya and Mount for Euclidean spaces. We prove the correctness of the algorithm and illustrate substantial performance improvement over the brute-force approach and several existing NN packages developed for general metric spaces. Our experimental results demonstrate a clear advantage of using the proposed method for both probabilistic roadmaps and rapidly exploring random trees</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2006.886840</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2007-02, Vol.23 (1), p.151-157
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_4084578
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer science
control theory
systems
Configuration space
Control theory. Systems
Costs
Data structures
Euclidean space
Exact sciences and technology
Extraterrestrial measurements
kd-trees
Learning theory
Metric space
Motion control
Motion planning
nearest-neighbor (NN) searching
Neural networks
Packages
Packaging
Path planning
Pattern recognition
probabilistic roadmaps (PRMs)
Queries
rapidly exploring random trees (RRTs)
Robotics
Robots
sampling-based motion planning
Searching
Topology
Tree graphs
title Improving Motion-Planning Algorithms by Efficient Nearest-Neighbor Searching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Motion-Planning%20Algorithms%20by%20Efficient%20Nearest-Neighbor%20Searching&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Yershova,%20A.&rft.date=2007-02-01&rft.volume=23&rft.issue=1&rft.spage=151&rft.epage=157&rft.pages=151-157&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2006.886840&rft_dat=%3Cproquest_RIE%3E34430853%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201570834&rft_id=info:pmid/&rft_ieee_id=4084578&rfr_iscdi=true