Stability regions of nonlinear dynamical systems: a constructive methodology
A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estima...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1989-12, Vol.34 (12), p.1229-1241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | 12 |
container_start_page | 1229 |
container_title | IEEE transactions on automatic control |
container_volume | 34 |
creator | Chiang, H.-D. Thorp, J.S. |
description | A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.< > |
doi_str_mv | 10.1109/9.40768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_40768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>40768</ieee_id><sourcerecordid>29051234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpiJnNA4IpxY4fsdlQxUuqxADM0Y3tFKMkLnaKlH9PIFVXpquj--kMB6FzShaUEn2jF5wUUh2gGRVCZbnI2SGaEUJVpnMlj9FJSp9jlJzTGVq99lD5xvcDjm7tQ5dwqHEXusZ3DiK2QwetN9DgNKTetekWAzYj6-PW9P7b4db1H8GGJqyHU3RUQ5Pc2e7O0fvD_dvyKVu9PD4v71aZYSzvMyupE7KutIaK2cIVlZZGslyDtaISXEpqQIKmhjOibFVLZnMAJay2DCrF5uhq6t3E8LV1qS9bn4xrGuhc2KYy10TQnPH_oZKCMVmM8HqCJoaUoqvLTfQtxKGkpPydtdTl36yjvNxVQhpnqSN0xqc9lwWnnJORXUzMO-f236niB27_f-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28653367</pqid></control><display><type>article</type><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><source>IEEE Xplore</source><creator>Chiang, H.-D. ; Thorp, J.S.</creator><creatorcontrib>Chiang, H.-D. ; Thorp, J.S.</creatorcontrib><description>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.40768</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Lyapunov method ; Nonlinear dynamical systems ; Nonlinear systems ; Power engineering and energy ; Power system control ; Power system stability ; Power system transients ; Power systems ; Stability analysis ; Yield estimation</subject><ispartof>IEEE transactions on automatic control, 1989-12, Vol.34 (12), p.1229-1241</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</citedby><cites>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/40768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/40768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6741440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiang, H.-D.</creatorcontrib><creatorcontrib>Thorp, J.S.</creatorcontrib><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.< ></description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Lyapunov method</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Power engineering and energy</subject><subject>Power system control</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Power systems</subject><subject>Stability analysis</subject><subject>Yield estimation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgUQpiJnNA4IpxY4fsdlQxUuqxADM0Y3tFKMkLnaKlH9PIFVXpquj--kMB6FzShaUEn2jF5wUUh2gGRVCZbnI2SGaEUJVpnMlj9FJSp9jlJzTGVq99lD5xvcDjm7tQ5dwqHEXusZ3DiK2QwetN9DgNKTetekWAzYj6-PW9P7b4db1H8GGJqyHU3RUQ5Pc2e7O0fvD_dvyKVu9PD4v71aZYSzvMyupE7KutIaK2cIVlZZGslyDtaISXEpqQIKmhjOibFVLZnMAJay2DCrF5uhq6t3E8LV1qS9bn4xrGuhc2KYy10TQnPH_oZKCMVmM8HqCJoaUoqvLTfQtxKGkpPydtdTl36yjvNxVQhpnqSN0xqc9lwWnnJORXUzMO-f236niB27_f-w</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Chiang, H.-D.</creator><creator>Thorp, J.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19891201</creationdate><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><author>Chiang, H.-D. ; Thorp, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Lyapunov method</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Power engineering and energy</topic><topic>Power system control</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Power systems</topic><topic>Stability analysis</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, H.-D.</creatorcontrib><creatorcontrib>Thorp, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiang, H.-D.</au><au>Thorp, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability regions of nonlinear dynamical systems: a constructive methodology</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1989-12-01</date><risdate>1989</risdate><volume>34</volume><issue>12</issue><spage>1229</spage><epage>1241</epage><pages>1229-1241</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.40768</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1989-12, Vol.34 (12), p.1229-1241 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_40768 |
source | IEEE Xplore |
subjects | Applied sciences Computer science control theory systems Control system analysis Control theory. Systems Exact sciences and technology Lyapunov method Nonlinear dynamical systems Nonlinear systems Power engineering and energy Power system control Power system stability Power system transients Power systems Stability analysis Yield estimation |
title | Stability regions of nonlinear dynamical systems: a constructive methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20regions%20of%20nonlinear%20dynamical%20systems:%20a%20constructive%20methodology&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chiang,%20H.-D.&rft.date=1989-12-01&rft.volume=34&rft.issue=12&rft.spage=1229&rft.epage=1241&rft.pages=1229-1241&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.40768&rft_dat=%3Cproquest_RIE%3E29051234%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28653367&rft_id=info:pmid/&rft_ieee_id=40768&rfr_iscdi=true |