Stability regions of nonlinear dynamical systems: a constructive methodology

A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1989-12, Vol.34 (12), p.1229-1241
Hauptverfasser: Chiang, H.-D., Thorp, J.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 12
container_start_page 1229
container_title IEEE transactions on automatic control
container_volume 34
creator Chiang, H.-D.
Thorp, J.S.
description A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.< >
doi_str_mv 10.1109/9.40768
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_40768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>40768</ieee_id><sourcerecordid>29051234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBWALgUQpiJnNA4IpxY4fsdlQxUuqxADM0Y3tFKMkLnaKlH9PIFVXpquj--kMB6FzShaUEn2jF5wUUh2gGRVCZbnI2SGaEUJVpnMlj9FJSp9jlJzTGVq99lD5xvcDjm7tQ5dwqHEXusZ3DiK2QwetN9DgNKTetekWAzYj6-PW9P7b4db1H8GGJqyHU3RUQ5Pc2e7O0fvD_dvyKVu9PD4v71aZYSzvMyupE7KutIaK2cIVlZZGslyDtaISXEpqQIKmhjOibFVLZnMAJay2DCrF5uhq6t3E8LV1qS9bn4xrGuhc2KYy10TQnPH_oZKCMVmM8HqCJoaUoqvLTfQtxKGkpPydtdTl36yjvNxVQhpnqSN0xqc9lwWnnJORXUzMO-f236niB27_f-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28653367</pqid></control><display><type>article</type><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><source>IEEE Xplore</source><creator>Chiang, H.-D. ; Thorp, J.S.</creator><creatorcontrib>Chiang, H.-D. ; Thorp, J.S.</creatorcontrib><description>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.40768</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Lyapunov method ; Nonlinear dynamical systems ; Nonlinear systems ; Power engineering and energy ; Power system control ; Power system stability ; Power system transients ; Power systems ; Stability analysis ; Yield estimation</subject><ispartof>IEEE transactions on automatic control, 1989-12, Vol.34 (12), p.1229-1241</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</citedby><cites>FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/40768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/40768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6741440$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiang, H.-D.</creatorcontrib><creatorcontrib>Thorp, J.S.</creatorcontrib><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.&lt; &gt;</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Lyapunov method</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear systems</subject><subject>Power engineering and energy</subject><subject>Power system control</subject><subject>Power system stability</subject><subject>Power system transients</subject><subject>Power systems</subject><subject>Stability analysis</subject><subject>Yield estimation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBWALgUQpiJnNA4IpxY4fsdlQxUuqxADM0Y3tFKMkLnaKlH9PIFVXpquj--kMB6FzShaUEn2jF5wUUh2gGRVCZbnI2SGaEUJVpnMlj9FJSp9jlJzTGVq99lD5xvcDjm7tQ5dwqHEXusZ3DiK2QwetN9DgNKTetekWAzYj6-PW9P7b4db1H8GGJqyHU3RUQ5Pc2e7O0fvD_dvyKVu9PD4v71aZYSzvMyupE7KutIaK2cIVlZZGslyDtaISXEpqQIKmhjOibFVLZnMAJay2DCrF5uhq6t3E8LV1qS9bn4xrGuhc2KYy10TQnPH_oZKCMVmM8HqCJoaUoqvLTfQtxKGkpPydtdTl36yjvNxVQhpnqSN0xqc9lwWnnJORXUzMO-f236niB27_f-w</recordid><startdate>19891201</startdate><enddate>19891201</enddate><creator>Chiang, H.-D.</creator><creator>Thorp, J.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19891201</creationdate><title>Stability regions of nonlinear dynamical systems: a constructive methodology</title><author>Chiang, H.-D. ; Thorp, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-d61e56fb99ab3d7e7b96c6329add5b54661ca6a91c4308dbf63d2aa85d9d3ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Lyapunov method</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear systems</topic><topic>Power engineering and energy</topic><topic>Power system control</topic><topic>Power system stability</topic><topic>Power system transients</topic><topic>Power systems</topic><topic>Stability analysis</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, H.-D.</creatorcontrib><creatorcontrib>Thorp, J.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiang, H.-D.</au><au>Thorp, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability regions of nonlinear dynamical systems: a constructive methodology</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1989-12-01</date><risdate>1989</risdate><volume>34</volume><issue>12</issue><spage>1229</spage><epage>1241</epage><pages>1229-1241</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A constructive methodology for estimating stability regions of general nonlinear dynamical systems is developed. The constructive methodology starts with a given Lyapunov function (either a global or a local Lyapunov function) and yields a sequence of Lyapunov functions which are then used to estimate the stability region. The resulting sequence of estimated stability regions is shown to be a strictly monotonic increasing sequence, and yet each of them remains inside the entire stability region. The significance of this methodology includes: its ability to reduce significantly the conservativeness in estimating the stability regions; its computational efficiency; its adaptability; and its sound theoretical basis.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.40768</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1989-12, Vol.34 (12), p.1229-1241
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_40768
source IEEE Xplore
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Exact sciences and technology
Lyapunov method
Nonlinear dynamical systems
Nonlinear systems
Power engineering and energy
Power system control
Power system stability
Power system transients
Power systems
Stability analysis
Yield estimation
title Stability regions of nonlinear dynamical systems: a constructive methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20regions%20of%20nonlinear%20dynamical%20systems:%20a%20constructive%20methodology&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chiang,%20H.-D.&rft.date=1989-12-01&rft.volume=34&rft.issue=12&rft.spage=1229&rft.epage=1241&rft.pages=1229-1241&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.40768&rft_dat=%3Cproquest_RIE%3E29051234%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28653367&rft_id=info:pmid/&rft_ieee_id=40768&rfr_iscdi=true