Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning

In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bakirtzis, A.G., Tellidou, A.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1173
container_issue
container_start_page 1168
container_title
container_volume
creator Bakirtzis, A.G.
Tellidou, A.C.
description In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems
doi_str_mv 10.1109/PSCE.2006.296473
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4075912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4075912</ieee_id><sourcerecordid>4075912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</originalsourceid><addsrcrecordid>eNo1T11Lw0AQPBFBrXkXfLk_kHq5j1zusS31AyoWa8G3srlsymlykbsU6b_38GNh2JlhmGUJuS7YtCiYuV1vFsspZ6ycclNKLU7IZSG5lKzQ1dspyYyu_rXm5ySL8Z2lEUZVTFyQYbZHP-ZziNjQjesPHYxu8HRo6Xr4wkCfIHzgGOnBN0ltvWuH0FPwDV3DMYeYz12iwVnn9_Tl0GGKxh-OzqesxT4doCuE4JN9Rc5a6CJmf3tCtnfL18VDvnq-f1zMVrnlnI85NFXZoJECjE1PtaIGZcpaaWHqBKuVrpBha5mq0TLLsNRYKtCINUOQYkJufnsdIu4-g-shHHeSaWUKLr4B3bFbtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bakirtzis, A.G. ; Tellidou, A.C.</creator><creatorcontrib>Bakirtzis, A.G. ; Tellidou, A.C.</creatorcontrib><description>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</description><identifier>ISBN: 9781424401772</identifier><identifier>ISBN: 1424401771</identifier><identifier>EISBN: 142440178X</identifier><identifier>EISBN: 9781424401789</identifier><identifier>DOI: 10.1109/PSCE.2006.296473</identifier><language>eng</language><subject>Costs ; Electricity supply industry ; Electricity supply industry deregulation ; Learning ; Power markets ; Power supplies ; Power system modeling ; Predictive models ; Pricing ; System testing</subject><ispartof>2006 IEEE PES Power Systems Conference and Exposition, 2006, p.1168-1173</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4075912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4075912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bakirtzis, A.G.</creatorcontrib><creatorcontrib>Tellidou, A.C.</creatorcontrib><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><title>2006 IEEE PES Power Systems Conference and Exposition</title><addtitle>PSCE</addtitle><description>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</description><subject>Costs</subject><subject>Electricity supply industry</subject><subject>Electricity supply industry deregulation</subject><subject>Learning</subject><subject>Power markets</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>Pricing</subject><subject>System testing</subject><isbn>9781424401772</isbn><isbn>1424401771</isbn><isbn>142440178X</isbn><isbn>9781424401789</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T11Lw0AQPBFBrXkXfLk_kHq5j1zusS31AyoWa8G3srlsymlykbsU6b_38GNh2JlhmGUJuS7YtCiYuV1vFsspZ6ycclNKLU7IZSG5lKzQ1dspyYyu_rXm5ySL8Z2lEUZVTFyQYbZHP-ZziNjQjesPHYxu8HRo6Xr4wkCfIHzgGOnBN0ltvWuH0FPwDV3DMYeYz12iwVnn9_Tl0GGKxh-OzqesxT4doCuE4JN9Rc5a6CJmf3tCtnfL18VDvnq-f1zMVrnlnI85NFXZoJECjE1PtaIGZcpaaWHqBKuVrpBha5mq0TLLsNRYKtCINUOQYkJufnsdIu4-g-shHHeSaWUKLr4B3bFbtg</recordid><startdate>20061029</startdate><enddate>20061029</enddate><creator>Bakirtzis, A.G.</creator><creator>Tellidou, A.C.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20061029</creationdate><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><author>Bakirtzis, A.G. ; Tellidou, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Costs</topic><topic>Electricity supply industry</topic><topic>Electricity supply industry deregulation</topic><topic>Learning</topic><topic>Power markets</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>Pricing</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bakirtzis, A.G.</creatorcontrib><creatorcontrib>Tellidou, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bakirtzis, A.G.</au><au>Tellidou, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</atitle><btitle>2006 IEEE PES Power Systems Conference and Exposition</btitle><stitle>PSCE</stitle><date>2006-10-29</date><risdate>2006</risdate><spage>1168</spage><epage>1173</epage><pages>1168-1173</pages><isbn>9781424401772</isbn><isbn>1424401771</isbn><eisbn>142440178X</eisbn><eisbn>9781424401789</eisbn><abstract>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</abstract><doi>10.1109/PSCE.2006.296473</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424401772
ispartof 2006 IEEE PES Power Systems Conference and Exposition, 2006, p.1168-1173
issn
language eng
recordid cdi_ieee_primary_4075912
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Costs
Electricity supply industry
Electricity supply industry deregulation
Learning
Power markets
Power supplies
Power system modeling
Predictive models
Pricing
System testing
title Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Agent-Based%20Simulation%20of%20Power%20Markets%20under%20Uniform%20and%20Pay-as-Bid%20Pricing%20Rules%20using%20Reinforcement%20Learning&rft.btitle=2006%20IEEE%20PES%20Power%20Systems%20Conference%20and%20Exposition&rft.au=Bakirtzis,%20A.G.&rft.date=2006-10-29&rft.spage=1168&rft.epage=1173&rft.pages=1168-1173&rft.isbn=9781424401772&rft.isbn_list=1424401771&rft_id=info:doi/10.1109/PSCE.2006.296473&rft_dat=%3Cieee_6IE%3E4075912%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142440178X&rft.eisbn_list=9781424401789&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4075912&rfr_iscdi=true