Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning
In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforc...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173 |
---|---|
container_issue | |
container_start_page | 1168 |
container_title | |
container_volume | |
creator | Bakirtzis, A.G. Tellidou, A.C. |
description | In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems |
doi_str_mv | 10.1109/PSCE.2006.296473 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_4075912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4075912</ieee_id><sourcerecordid>4075912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</originalsourceid><addsrcrecordid>eNo1T11Lw0AQPBFBrXkXfLk_kHq5j1zusS31AyoWa8G3srlsymlykbsU6b_38GNh2JlhmGUJuS7YtCiYuV1vFsspZ6ycclNKLU7IZSG5lKzQ1dspyYyu_rXm5ySL8Z2lEUZVTFyQYbZHP-ZziNjQjesPHYxu8HRo6Xr4wkCfIHzgGOnBN0ltvWuH0FPwDV3DMYeYz12iwVnn9_Tl0GGKxh-OzqesxT4doCuE4JN9Rc5a6CJmf3tCtnfL18VDvnq-f1zMVrnlnI85NFXZoJECjE1PtaIGZcpaaWHqBKuVrpBha5mq0TLLsNRYKtCINUOQYkJufnsdIu4-g-shHHeSaWUKLr4B3bFbtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bakirtzis, A.G. ; Tellidou, A.C.</creator><creatorcontrib>Bakirtzis, A.G. ; Tellidou, A.C.</creatorcontrib><description>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</description><identifier>ISBN: 9781424401772</identifier><identifier>ISBN: 1424401771</identifier><identifier>EISBN: 142440178X</identifier><identifier>EISBN: 9781424401789</identifier><identifier>DOI: 10.1109/PSCE.2006.296473</identifier><language>eng</language><subject>Costs ; Electricity supply industry ; Electricity supply industry deregulation ; Learning ; Power markets ; Power supplies ; Power system modeling ; Predictive models ; Pricing ; System testing</subject><ispartof>2006 IEEE PES Power Systems Conference and Exposition, 2006, p.1168-1173</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4075912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4075912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bakirtzis, A.G.</creatorcontrib><creatorcontrib>Tellidou, A.C.</creatorcontrib><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><title>2006 IEEE PES Power Systems Conference and Exposition</title><addtitle>PSCE</addtitle><description>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</description><subject>Costs</subject><subject>Electricity supply industry</subject><subject>Electricity supply industry deregulation</subject><subject>Learning</subject><subject>Power markets</subject><subject>Power supplies</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>Pricing</subject><subject>System testing</subject><isbn>9781424401772</isbn><isbn>1424401771</isbn><isbn>142440178X</isbn><isbn>9781424401789</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T11Lw0AQPBFBrXkXfLk_kHq5j1zusS31AyoWa8G3srlsymlykbsU6b_38GNh2JlhmGUJuS7YtCiYuV1vFsspZ6ycclNKLU7IZSG5lKzQ1dspyYyu_rXm5ySL8Z2lEUZVTFyQYbZHP-ZziNjQjesPHYxu8HRo6Xr4wkCfIHzgGOnBN0ltvWuH0FPwDV3DMYeYz12iwVnn9_Tl0GGKxh-OzqesxT4doCuE4JN9Rc5a6CJmf3tCtnfL18VDvnq-f1zMVrnlnI85NFXZoJECjE1PtaIGZcpaaWHqBKuVrpBha5mq0TLLsNRYKtCINUOQYkJufnsdIu4-g-shHHeSaWUKLr4B3bFbtg</recordid><startdate>20061029</startdate><enddate>20061029</enddate><creator>Bakirtzis, A.G.</creator><creator>Tellidou, A.C.</creator><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20061029</creationdate><title>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</title><author>Bakirtzis, A.G. ; Tellidou, A.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-ad86de943a9c473f3ba596b5739b739c7578e0efc05bec0c0e67e65a7eeb0ea43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Costs</topic><topic>Electricity supply industry</topic><topic>Electricity supply industry deregulation</topic><topic>Learning</topic><topic>Power markets</topic><topic>Power supplies</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>Pricing</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bakirtzis, A.G.</creatorcontrib><creatorcontrib>Tellidou, A.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bakirtzis, A.G.</au><au>Tellidou, A.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning</atitle><btitle>2006 IEEE PES Power Systems Conference and Exposition</btitle><stitle>PSCE</stitle><date>2006-10-29</date><risdate>2006</risdate><spage>1168</spage><epage>1173</epage><pages>1168-1173</pages><isbn>9781424401772</isbn><isbn>1424401771</isbn><eisbn>142440178X</eisbn><eisbn>9781424401789</eisbn><abstract>In this paper agent-based simulation is employed to study the power market operation under two alternative pricing systems: uniform and discriminatory (pay-as-bid). Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a reinforcement learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this paper; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. A test system with five supplier-agents is used to study the suppliers' behavior under the uniform and the pay-as-bid pricing systems</abstract><doi>10.1109/PSCE.2006.296473</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424401772 |
ispartof | 2006 IEEE PES Power Systems Conference and Exposition, 2006, p.1168-1173 |
issn | |
language | eng |
recordid | cdi_ieee_primary_4075912 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Costs Electricity supply industry Electricity supply industry deregulation Learning Power markets Power supplies Power system modeling Predictive models Pricing System testing |
title | Agent-Based Simulation of Power Markets under Uniform and Pay-as-Bid Pricing Rules using Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Agent-Based%20Simulation%20of%20Power%20Markets%20under%20Uniform%20and%20Pay-as-Bid%20Pricing%20Rules%20using%20Reinforcement%20Learning&rft.btitle=2006%20IEEE%20PES%20Power%20Systems%20Conference%20and%20Exposition&rft.au=Bakirtzis,%20A.G.&rft.date=2006-10-29&rft.spage=1168&rft.epage=1173&rft.pages=1168-1173&rft.isbn=9781424401772&rft.isbn_list=1424401771&rft_id=info:doi/10.1109/PSCE.2006.296473&rft_dat=%3Cieee_6IE%3E4075912%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142440178X&rft.eisbn_list=9781424401789&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4075912&rfr_iscdi=true |